Skip to main content

Transport of nickel and cobalt ions into bacterial cells by S components of ECF transporters

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Energy-coupling factor (ECF) transporters form a distinct group of ABC-type micronutrient importers in prokaryotes that do not contain extracytoplasmic, soluble substrate-binding proteins. Instead, they consist of a transmembrane substrate-specific S component that interacts with a module composed of a moderately conserved transmembrane (T) component and ABC ATPases. The majority of S components is considered to act as high-affinity binding proteins that strictly depend on their cognate T and ATPase units for transport activity. For a fraction of biotin-specific S units, however, transport activity was demonstrated in their solitary state. Here, we compared the activities of nickel- and cobalt-specific ECF transporters in the presence and absence of their T and ATPase units. Accumulation assays with radioactive metal ions showed that the truncated transporters led to approx. 25 % of cell-bound radioactivity compared to the holotransporters. Activity of urease, an intracellular nickel-dependent enzyme, was used as a reporter and clearly indicated that the cell-bound radioactivity correlates with the cytoplasmic metal concentration. The results demonstrate that S units of metal transporters not only bind their substrates on the cell surface but mediate transport across the membrane, a finding of general importance on the way to understand the mechanism of ECF transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berntsson RP, ter Beek J, Majsnerowska M, Duurkens RH, Puri P, Poolman B, Slotboom DJ (2012) Structural divergence of paralogous S components from ECF-type ABC transporters. Proc Natl Acad Sci USA 109:13990–13995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boer JL, Hausinger RP (2013) Nickel-binding sites in proteins. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of Metalloproteins. Springer, Berlin, pp 1528–1534

    Chapter  Google Scholar 

  • Boer JL, Mulrooney SB, Hausinger RP (2014) Nickel-dependent metalloenzymes. Arch Biochem Biophys 544:142–152

    Article  CAS  PubMed  Google Scholar 

  • Cherrier MV, Cavazza C, Bochot C, Lemaire D, Fontecilla-Camps JC (2008) Structural characterization of a putative endogenous metal chelator in the periplasmic nickel transporter NikA. Biochemistry 47:9937–9943

    Article  CAS  PubMed  Google Scholar 

  • Chivers PT, Benanti EL, Heil-Chapdelaine V, Iwig JS, Rowe JL (2012) Identification of Ni–(L–His)2 as a substrate for NikABCDE-dependent nickel uptake in Escherichia coli. Metallomics 4:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Eitinger T (2013a) Cobalt transporters. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, Heidelberg, pp 678–682

  • Eitinger T (2013b) Nickel transporters. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, Heidelberg, pp 1515–1519

  • Eitinger T (2013c) Transport of nickel and cobalt in prokaryotes. In: Culotta V, Scott RA (eds) Metals and cells. Encyclopedia of inorganic and bioinorganic chemistry. Wiley, Chichester, pp 145–154

  • Eitinger T, Rodionov DA, Grote M, Schneider E (2011) Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 35:3–67

    Article  CAS  PubMed  Google Scholar 

  • Erkens GB, Berntsson RP, Fulyani F, Majsnerowska M, Vujicic-Zagar A, Ter Beek J, Poolman B, Slotboom DJ (2011) The structural basis of modularity in ECF-type ABC transporters. Nat Struct Mol Biol 18:755–760

    Article  CAS  PubMed  Google Scholar 

  • Farrugia MA, Macomber L, Hausinger RP (2013) Biosynthesis of the urease metallocenter. J Biol Chem 288:13178–13185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finkenwirth F, Neubauer O, Gunzenhäuser J, Schoknecht J, Scolari S, Stöckl M, Korte T, Herrmann A, Eitinger T (2010) Subunit composition of an energy-coupling-factor-type biotin transporter analysed in living bacteria. Biochem J 431:373–380

    CAS  PubMed  Google Scholar 

  • Finkenwirth F, Kirsch F, Eitinger T (2013) Solitary BioY proteins mediate biotin transport into recombinant Escherichia coli. J Bacteriol 195:4105–4111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finkenwirth F, Kirsch F, Eitinger T (2014) A versatile Escherichia coli strain for identification of biotin transporters and for biotin quantification. Bioengineered 5: in press, http://dx.doi.org/10.4161/bioe.26887

  • Goffin P, Deghorain M, Mainardi JL, Tytgat I, Champomier-Vergès MC, Kleerebezem M, Hols P (2005) Lactate racemization as a rescue pathway for supplying d-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum. J Bacteriol 187:6750–6761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrop TC, Mascharak PK (2013) Cobalt-containing enzymes. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, Berlin, pp 684–690

    Chapter  Google Scholar 

  • Hebbeln P, Rodionov DA, Alfandega A, Eitinger T (2007) Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module. Proc Natl Acad Sci USA 104:2909–2914

    Article  PubMed Central  PubMed  Google Scholar 

  • Howlett RM, Hughes BM, Hitchcock A, Kelly DJ (2012) Hydrogenase activity in the foodborne pathogen Campylobacter jejuni depends upon a novel ABC-type nickel transporter (NikZYXWV) and is SlyD-independent. Microbiology 158:1645–1655

    Article  CAS  PubMed  Google Scholar 

  • Karpowich NK, Wang DN (2013) Assembly and mechanism of a group II ECF transporter. Proc Natl Acad Sci USA 110:2534–2539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lebrette H, Iannello M, Fontecilla-Camps JC, Cavazza C (2013) The binding mode of Ni–(L–His)2 in NikA revealed by X-ray crystallography. J Inorg Biochem 121:16–18

    Article  CAS  PubMed  Google Scholar 

  • Mulrooney SB, Pankratz HS, Hausinger RP (1989) Regulation of gene expression and cellular localization of cloned Klebsiella aerogenes (K. pneumoniae) urease. J Gen Microbiol 135:1769–1776

    CAS  PubMed  Google Scholar 

  • Neubauer O, Alfandega A, Schoknecht J, Sternberg U, Pohlmann A, Eitinger T (2009) Two essential arginine residues in the T components of energy-coupling factor transporters. J Bacteriol 191:6482–6488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Odaka M, Kobayashi M (2013) Cobalt proteins, overview. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of Metallopoteins. Springer, Berlin, pp 670–678

    Chapter  Google Scholar 

  • Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodionov DA, Hebbeln P, Eudes A, ter Beek J, Rodionova IA, Erkens GB, Slotboom DJ, Gelfand MS, Osterman AL, Hanson AD, Eitinger T (2009) A novel class of modular transporters for vitamins in prokaryotes. J Bacteriol 191:42–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sawers RG (2013) Nickel in bacteria and archaea. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of Metalloproteins. Springer, Heidelberg, pp 1490–1496

    Chapter  Google Scholar 

  • Shaik MM, Cendron L, Salamina M, Ruzzene M, Zanotti G (2014) Helicobacter pylori periplasmic receptor CeuE (HP1561) modulates its nickel affinity via organic metallophores. Mol Microbiol 91:724–735

    Article  CAS  PubMed  Google Scholar 

  • Siche S, Neubauer O, Hebbeln P, Eitinger T (2010) A bipartite S unit of an ECF-type cobalt transporter. Res Microbiol 161:824–829

    Article  CAS  PubMed  Google Scholar 

  • Slotboom DJ (2014) Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. Nat Rev Microbiol 12:79–87

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Fu G, Pan X, Wu J, Gong X, Wang J, Shi Y (2013) Structure of a bacterial energy-coupling factor transporter. Nature 497:272–276

    Article  CAS  PubMed  Google Scholar 

  • Wolfram L, Friedrich B, Eitinger T (1995) The Alcaligenes eutrophus protein HoxN mediates nickel transport in Escherichia coli. J Bacteriol 177:1840–1843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu K, Zhang M, Zhao Q, Yu F, Guo H, Wang C, He F, Ding J, Zhang P (2013) Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature 497:268–271

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Zhou M, Kirsch F, Xu C, Zhang L, Wang Y, Jiang Z, Wang N, Li J, Eitinger T, Yang M (2014) Planar substrate-binding site dictates the specificity of ECF-type nickel/cobalt transporters. Cell Res 24:267–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang P (2013) Structure and mechanism of energy-coupling factor transporters. Trends Microbiol 21:652–659

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN (2009) Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genom 10:78

    Article  Google Scholar 

  • Zhang P, Wang J, Shi Y (2010) Structure and mechanism of the S component of a bacterial ECF transporter. Nature 468:717–720

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Stefanie Siche and Peter Hebbeln for assistance with plasmid constructions. This research has been funded by grants EI 374/2-3, EI374/3-1 and (within PAK459) EI 374/4-1 and EI 374/4-2 to T.E. by the Deutsche Forschungsgemeinschaft.

Conflict of interest

There is no conflict of interest which effects objectivity in regard to publishing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Eitinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirsch, F., Eitinger, T. Transport of nickel and cobalt ions into bacterial cells by S components of ECF transporters. Biometals 27, 653–660 (2014). https://doi.org/10.1007/s10534-014-9738-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9738-3

Keywords