Abstract
Energy-coupling factor (ECF) transporters form a distinct group of ABC-type micronutrient importers in prokaryotes that do not contain extracytoplasmic, soluble substrate-binding proteins. Instead, they consist of a transmembrane substrate-specific S component that interacts with a module composed of a moderately conserved transmembrane (T) component and ABC ATPases. The majority of S components is considered to act as high-affinity binding proteins that strictly depend on their cognate T and ATPase units for transport activity. For a fraction of biotin-specific S units, however, transport activity was demonstrated in their solitary state. Here, we compared the activities of nickel- and cobalt-specific ECF transporters in the presence and absence of their T and ATPase units. Accumulation assays with radioactive metal ions showed that the truncated transporters led to approx. 25 % of cell-bound radioactivity compared to the holotransporters. Activity of urease, an intracellular nickel-dependent enzyme, was used as a reporter and clearly indicated that the cell-bound radioactivity correlates with the cytoplasmic metal concentration. The results demonstrate that S units of metal transporters not only bind their substrates on the cell surface but mediate transport across the membrane, a finding of general importance on the way to understand the mechanism of ECF transporters.




Similar content being viewed by others
References
Berntsson RP, ter Beek J, Majsnerowska M, Duurkens RH, Puri P, Poolman B, Slotboom DJ (2012) Structural divergence of paralogous S components from ECF-type ABC transporters. Proc Natl Acad Sci USA 109:13990–13995
Boer JL, Hausinger RP (2013) Nickel-binding sites in proteins. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of Metalloproteins. Springer, Berlin, pp 1528–1534
Boer JL, Mulrooney SB, Hausinger RP (2014) Nickel-dependent metalloenzymes. Arch Biochem Biophys 544:142–152
Cherrier MV, Cavazza C, Bochot C, Lemaire D, Fontecilla-Camps JC (2008) Structural characterization of a putative endogenous metal chelator in the periplasmic nickel transporter NikA. Biochemistry 47:9937–9943
Chivers PT, Benanti EL, Heil-Chapdelaine V, Iwig JS, Rowe JL (2012) Identification of Ni–(L–His)2 as a substrate for NikABCDE-dependent nickel uptake in Escherichia coli. Metallomics 4:1043–1050
Eitinger T (2013a) Cobalt transporters. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, Heidelberg, pp 678–682
Eitinger T (2013b) Nickel transporters. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, Heidelberg, pp 1515–1519
Eitinger T (2013c) Transport of nickel and cobalt in prokaryotes. In: Culotta V, Scott RA (eds) Metals and cells. Encyclopedia of inorganic and bioinorganic chemistry. Wiley, Chichester, pp 145–154
Eitinger T, Rodionov DA, Grote M, Schneider E (2011) Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 35:3–67
Erkens GB, Berntsson RP, Fulyani F, Majsnerowska M, Vujicic-Zagar A, Ter Beek J, Poolman B, Slotboom DJ (2011) The structural basis of modularity in ECF-type ABC transporters. Nat Struct Mol Biol 18:755–760
Farrugia MA, Macomber L, Hausinger RP (2013) Biosynthesis of the urease metallocenter. J Biol Chem 288:13178–13185
Finkenwirth F, Neubauer O, Gunzenhäuser J, Schoknecht J, Scolari S, Stöckl M, Korte T, Herrmann A, Eitinger T (2010) Subunit composition of an energy-coupling-factor-type biotin transporter analysed in living bacteria. Biochem J 431:373–380
Finkenwirth F, Kirsch F, Eitinger T (2013) Solitary BioY proteins mediate biotin transport into recombinant Escherichia coli. J Bacteriol 195:4105–4111
Finkenwirth F, Kirsch F, Eitinger T (2014) A versatile Escherichia coli strain for identification of biotin transporters and for biotin quantification. Bioengineered 5: in press, http://dx.doi.org/10.4161/bioe.26887
Goffin P, Deghorain M, Mainardi JL, Tytgat I, Champomier-Vergès MC, Kleerebezem M, Hols P (2005) Lactate racemization as a rescue pathway for supplying d-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum. J Bacteriol 187:6750–6761
Harrop TC, Mascharak PK (2013) Cobalt-containing enzymes. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, Berlin, pp 684–690
Hebbeln P, Rodionov DA, Alfandega A, Eitinger T (2007) Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module. Proc Natl Acad Sci USA 104:2909–2914
Howlett RM, Hughes BM, Hitchcock A, Kelly DJ (2012) Hydrogenase activity in the foodborne pathogen Campylobacter jejuni depends upon a novel ABC-type nickel transporter (NikZYXWV) and is SlyD-independent. Microbiology 158:1645–1655
Karpowich NK, Wang DN (2013) Assembly and mechanism of a group II ECF transporter. Proc Natl Acad Sci USA 110:2534–2539
Lebrette H, Iannello M, Fontecilla-Camps JC, Cavazza C (2013) The binding mode of Ni–(L–His)2 in NikA revealed by X-ray crystallography. J Inorg Biochem 121:16–18
Mulrooney SB, Pankratz HS, Hausinger RP (1989) Regulation of gene expression and cellular localization of cloned Klebsiella aerogenes (K. pneumoniae) urease. J Gen Microbiol 135:1769–1776
Neubauer O, Alfandega A, Schoknecht J, Sternberg U, Pohlmann A, Eitinger T (2009) Two essential arginine residues in the T components of energy-coupling factor transporters. J Bacteriol 191:6482–6488
Odaka M, Kobayashi M (2013) Cobalt proteins, overview. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of Metallopoteins. Springer, Berlin, pp 670–678
Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327
Rodionov DA, Hebbeln P, Eudes A, ter Beek J, Rodionova IA, Erkens GB, Slotboom DJ, Gelfand MS, Osterman AL, Hanson AD, Eitinger T (2009) A novel class of modular transporters for vitamins in prokaryotes. J Bacteriol 191:42–51
Sawers RG (2013) Nickel in bacteria and archaea. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of Metalloproteins. Springer, Heidelberg, pp 1490–1496
Shaik MM, Cendron L, Salamina M, Ruzzene M, Zanotti G (2014) Helicobacter pylori periplasmic receptor CeuE (HP1561) modulates its nickel affinity via organic metallophores. Mol Microbiol 91:724–735
Siche S, Neubauer O, Hebbeln P, Eitinger T (2010) A bipartite S unit of an ECF-type cobalt transporter. Res Microbiol 161:824–829
Slotboom DJ (2014) Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. Nat Rev Microbiol 12:79–87
Wang T, Fu G, Pan X, Wu J, Gong X, Wang J, Shi Y (2013) Structure of a bacterial energy-coupling factor transporter. Nature 497:272–276
Wolfram L, Friedrich B, Eitinger T (1995) The Alcaligenes eutrophus protein HoxN mediates nickel transport in Escherichia coli. J Bacteriol 177:1840–1843
Xu K, Zhang M, Zhao Q, Yu F, Guo H, Wang C, He F, Ding J, Zhang P (2013) Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature 497:268–271
Yu Y, Zhou M, Kirsch F, Xu C, Zhang L, Wang Y, Jiang Z, Wang N, Li J, Eitinger T, Yang M (2014) Planar substrate-binding site dictates the specificity of ECF-type nickel/cobalt transporters. Cell Res 24:267–277
Zhang P (2013) Structure and mechanism of energy-coupling factor transporters. Trends Microbiol 21:652–659
Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN (2009) Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genom 10:78
Zhang P, Wang J, Shi Y (2010) Structure and mechanism of the S component of a bacterial ECF transporter. Nature 468:717–720
Acknowledgments
We thank Stefanie Siche and Peter Hebbeln for assistance with plasmid constructions. This research has been funded by grants EI 374/2-3, EI374/3-1 and (within PAK459) EI 374/4-1 and EI 374/4-2 to T.E. by the Deutsche Forschungsgemeinschaft.
Conflict of interest
There is no conflict of interest which effects objectivity in regard to publishing this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kirsch, F., Eitinger, T. Transport of nickel and cobalt ions into bacterial cells by S components of ECF transporters. Biometals 27, 653–660 (2014). https://doi.org/10.1007/s10534-014-9738-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10534-014-9738-3


