Skip to main content
Log in

Physiological copper exposure in Jurkat cells induces changes in the expression of genes encoding cholesterol biosynthesis proteins

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Copper is an essential micronutrient that functions as an enzymatic cofactor in a wide range of cellular processes. Although adequate Cu levels are essential for normal metabolism, excess Cu can be toxic to cells. Cellular responses to copper deficiency and overload involve changes in the expression of genes directly and indirectly involved in copper metabolism. However little is known on the effect of physiological copper concentration on gene expression changes. In the current study we aimed to establish whether the expression of genes encoding enzymes related to cholesterol (hmgcs1, hmgcr, fdft) and fatty acid biosynthesis and LDL receptor can be induced by an iso-physiological copper concentration. The iso-physiological copper concentration was determined as the bioavailable plasmatic copper in a healthy adult population. In doing so, two blood cell lines (Jurkat and THP-1) were exposed for 6 or 24 h to iso- or supraphysiological copper concentrations. Our results indicated that in cells exposed to an iso-physiological copper concentration the early induction of genes involved in lipid metabolism was not mediated by copper itself but by the modification of the cellular redox status. Thus our results contributed to understand the involvement of copper in the regulation of cholesterol metabolism under physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amemiya-Kudo M, Shimano H, Hasty AH, Yahagi N, Yoshikawa T, Matsuzaka T, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Osuga J, Harada K, Gotoda T, Sato R, Kimura S, Ishibashi S, Yamada N (2002) Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. J Lipid Res 43:1220–1235

    PubMed  CAS  Google Scholar 

  • Armendariz AD, Gonzalez M, Loguinov AV, Vulpe CD (2004) Gene expression profiling in chronic copper overload reveals upregulation of Prnp and App. Physiol Genomics 20:45–54

    Article  PubMed  CAS  Google Scholar 

  • Burkhead JL, Ralle M, Wilmarth P, David L, Lutsenko S (2011) Elevated copper remodels hepatic RNA processing machinery in the mouse model of Wilson’s disease. J Mol Biol 406:44–58

    Article  PubMed  CAS  Google Scholar 

  • Cousins RJ (1994) Metal elements and gene expression. Annu Rev Nutr 14:449–469

    Article  PubMed  CAS  Google Scholar 

  • de Cremoux P, Bieche I, Tran-Perennou C, Vignaud S, Boudou E, Asselain B, Lidereau R, Magdelenat H, Becette V, Sigal-Zafrani B, Spyratos F (2004) Inter-laboratory quality control for hormone-dependent gene expression in human breast tumors using real-time reverse transcription-polymerase chain reaction. Endocr Relat Cancer 11:489–495

    Article  PubMed  Google Scholar 

  • Deschamps P, Kulkarni PP, Sarkar B (2004) X-ray structure of physiological copper(II)-bis(l-histidinato) complex. Inorg Chem 43:3338–3340

    Article  PubMed  CAS  Google Scholar 

  • Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–114 116, 118–119

    PubMed  CAS  Google Scholar 

  • Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez M, Reyes-Jara A, Suazo M, Jo WJ, Vulpe C (2008) Expression of copper-related genes in response to copper load. Am J Clin Nutr 88:830S–834S

    PubMed  CAS  Google Scholar 

  • Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1:1125–1142

    Article  PubMed  CAS  Google Scholar 

  • Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W (1994) The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 13:2870–2875

    PubMed  CAS  Google Scholar 

  • Huster D, Purnat TD, Burkhead JL, Ralle M, Fiehn O, Stuckert F, Olson NE, Teupser D, Lutsenko S (2007) High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease. J Biol Chem 282:8343–8355

    Article  PubMed  CAS  Google Scholar 

  • Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    Article  PubMed  CAS  Google Scholar 

  • Kelly EJ, Palmiter RD (1996) A murine model of Menkes disease reveals a physiological function of metallothionein. Nat Genet 13:219–222

    Article  PubMed  CAS  Google Scholar 

  • Kreuder J, Otten A, Fuder H, Tumer Z, Tonnesen T, Horn N, Dralle D (1993) Clinical and biochemical consequences of copper-histidine therapy in Menkes disease. Eur J Pediatr 152:828–832

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Prohaska JR, Thiele DJ (2001) Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A 98:6842–6847

    Article  PubMed  CAS  Google Scholar 

  • Lei KY (1991) Dietary copper: cholesterol and lipoprotein metabolism. Annu Rev Nutr 11:265–283

    Article  PubMed  CAS  Google Scholar 

  • Lichtlen P, Schaffner W (2001) The “metal transcription factor” MTF-1: biological facts and medical implications. Swiss Med Wkly 131:647–652

    PubMed  CAS  Google Scholar 

  • Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:S797–S811

    Google Scholar 

  • Luza SC, Speisky HC (1996) Liver copper storage and transport during development: implications for cytotoxicity. Am J Clin Nutr 63:812S–820S

    PubMed  CAS  Google Scholar 

  • Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20:2471–2472

    Article  PubMed  CAS  Google Scholar 

  • McElwee MK, Song MO, Freedman JH (2009) Copper activation of NF-kappaB signaling in HepG2 cells. J Mol Biol 393:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Muller P, van Bakel H, van de Sluis B, Holstege F, Wijmenga C, Klomp LW (2007) Gene expression profiling of liver cells after copper overload in vivo and in vitro reveals new copper-regulated genes. J Biol Inorg Chem 12:495–507

    Article  PubMed  CAS  Google Scholar 

  • Palmer C, Diehn M, Alizadeh AA, Brown PO (2006) Cell-type specific gene expression profiles of leukocytes in human peripheral blood. BMC Genomics 7:115

    Article  PubMed  Google Scholar 

  • Pauwels M, van Weyenbergh J, Soumillion A, Proost P, De Ley M (1994) Induction by zinc of specific metallothionein isoforms in human monocytes. Eur J Biochem 220:105–110

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  • Sadhu C, Gedamu L (1989) Metal-specific posttranscriptional control of human metallothionein genes. Mol Cell Biol 9:5738–5741

    PubMed  CAS  Google Scholar 

  • Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH (2002) Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem 277:20438–20445

    Article  PubMed  CAS  Google Scholar 

  • Sekiya M, Hiraishi A, Touyama M, Sakamoto K (2008) Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells. Biochem Biophys Res Commun 375:602–607

    Article  PubMed  CAS  Google Scholar 

  • Seth R, Yang S, Choi S, Sabean M, Roberts EA (2004) In vitro assessment of copper-induced toxicity in the human hepatoma line, Hep G2. Toxicol In Vitro 18:501–509

    Article  PubMed  CAS  Google Scholar 

  • Steinbrenner H, Ramos MC, Stuhlmann D, Mitic D, Sies H, Brenneisen P (2005) Tumor promoter TPA stimulates MMP-9 secretion from human keratinocytes by activation of superoxide-producing NADPH oxidase. Free Radic Res 39:245–253

    Article  PubMed  CAS  Google Scholar 

  • Suazo M, Olivares F, Mendez MA, Pulgar R, Prohaska JR, Arredondo M, Pizarro F, Olivares M, Araya M, Gonzalez M (2008) CCS and SOD1 mRNA are reduced after copper supplementation in peripheral mononuclear cells of individuals with high serum ceruloplasmin concentration. J Nutr Biochem 19:269–274

    Article  PubMed  CAS  Google Scholar 

  • Svensson PA, Englund MC, Markstrom E, Ohlsson BG, Jernas M, Billig H, Torgerson JS, Wiklund O, Carlsson LM, Carlsson B (2003) Copper induces the expression of cholesterogenic genes in human macrophages. Atherosclerosis 169:71–76

    Article  PubMed  CAS  Google Scholar 

  • Tang Z, Gasperkova D, Xu J, Baillie R, Lee JH, Clarke SD (2000) Copper deficiency induces hepatic fatty acid synthase gene transcription in rats by increasing the nuclear content of mature sterol regulatory element binding protein 1. J Nutr 130:2915–2921

    PubMed  CAS  Google Scholar 

  • Tapia L, Suazo M, Hodar C, Cambiazo V, Gonzalez M (2003) Copper exposure modifies the content and distribution of trace metals in mammalian cultured cells. Biometals 16:169–174

    Article  PubMed  CAS  Google Scholar 

  • Tapia L, Gonzalez-Aguero M, Cisternas MF, Suazo M, Cambiazo V, Uauy R, Gonzalez M (2004) Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels. Biochem J 378:617–624

    Article  PubMed  CAS  Google Scholar 

  • Thiele DJ (1992) Metal-regulated transcription in eukaryotes. Nucleic Acids Res 20:1183–1191

    Article  PubMed  CAS  Google Scholar 

  • Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952s–959s

    PubMed  CAS  Google Scholar 

  • Wang XJ, Hayes JD, Higgins LG, Wolf CR, Dinkova-Kostova AT (2010) Activation of the NRF2 signaling pathway by copper-mediated redox cycling of para- and ortho-hydroquinones. Chem Biol 17:75–85

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding sources: This research was supported by grants from FONDECYT 3120098, 11070255, 1110427 and 1120254 and FONDAP 15090007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio González.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 41 kb)

Supplementary material 2 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-García, R., del Pozo, T., Suazo, M. et al. Physiological copper exposure in Jurkat cells induces changes in the expression of genes encoding cholesterol biosynthesis proteins. Biometals 26, 1033–1040 (2013). https://doi.org/10.1007/s10534-013-9680-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9680-9

Keywords

Navigation