BioMetals

, Volume 26, Issue 6, pp 1023–1031 | Cite as

The impact of ionic mercury on antioxidant defenses in two mercury-sensitive anaerobic bacteria

Article

Abstract

While the toxicological effects of mercury (Hg) are well studied in mammals, little is known about the mechanisms of toxicity to bacterial cells lacking an Hg resistance (mer) operon. We determined that Shewanella oneidensis MR-1 is more sensitive to ionic mercury [Hg(II)] under aerobic conditions than in fumarate reducing conditions, with minimum inhibitory concentrations of 0.25 and 2 μM respectively. This increased sensitivity in aerobic conditions is not due to increased import, as more Hg is associated with cellular material in fumarate reducing conditions than in aerobic conditions. In fumarate reducing conditions, glutathione may provide protection, as glutathione levels decrease in a dose-dependent manner, but this does not occur in aerobic conditions. Hg(II) does not change the redox state of thioredoxin in MR1 in either fumarate reducing conditions or aerobic conditions, although thioredoxin is oxidized in Geobacter sulfurreducens PCA in response to Hg(II) treatment. However, treatment with 0.5 μM Hg(II) increases lipid peroxidation in aerobic conditions but not in fumarate reducing conditions in MR-1. We conclude that the enhanced sensitivity of MR-1 to Hg(II) in aerobic conditions is not due to differences in intracellular responses, but due to damage at the cell envelope.

Keywords

Shewanella oneidensis Geobacter sulfurreducens Mercury Glutathione Antioxidant Lipid peroxidation Thioredoxin 

Supplementary material

10534_2013_9679_MOESM1_ESM.ppt (150 kb)
Supplementary Fig. 1Growth of MR-1 under aerobic conditions (a) or fumarate reducing conditions (b) in the presence of Hg(II). Thick line 0 Hg(II); open circles 0.1 μM Hg(II); open triangles 0.25 μM Hg(II); open squares 0.5 μM Hg(II); open diamonds 1 μM Hg(II); filled triangles 2 μM Hg(II); filled circles 5 μM Hg(II). Symbols represent the mean of triplicate cultures. Error bars represent standard deviation of the mean (PPT 146 kb)
10534_2013_9679_MOESM2_ESM.ppt (92 kb)
Supplementary Fig. 2Growth of PCA in the presence of Hg(II). Thick line 0 Hg(II); open circles 0.5 μM Hg(II); open squares 1.0 μM Hg(II); open triangles 5.0 μM Hg(II); closed squares 10 μM Hg(II); closed circles 25 μM Hg(II). Symbols represent the mean of triplicate cultures. Error bars represent standard deviation of the mean (PPT 89 kb)

References

  1. Arnér ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267(20):6102–6109 Google Scholar
  2. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384PubMedCrossRefGoogle Scholar
  3. Barkay T, Kritee K, Boyd E, Geesey G (2010) A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environ Microbiol 12(11):2904–2917PubMedCrossRefGoogle Scholar
  4. Bersani NA, Merwin JR, Lopez NI, Pearson GD, Merrill GF (2002) Protein electrophoretic mobility shift assay to monitor redox state of thioredoxin in cells. Methods Enzymol 347:317–326PubMedCrossRefGoogle Scholar
  5. Blindauer C (2011) Bacterial metallothioneins: past, present, and questions for the future. J Biol Inorg Chem 16(7):1011–1024 Google Scholar
  6. Botsoglou NA, Fletouris DJ, Papageorgiou GE, Vassilopoulos VN, Mantis AJ, Trakatellis AG (1994) Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J Agric Food Chem 42(9):1931–1937CrossRefGoogle Scholar
  7. Branco V, Canário J, Holmgren A, Carvalho C (2011) Inhibition of the thioredoxin system in the brain and liver of zebra-seabreams exposed to waterborne methylmercury. Toxicol Appl Pharmacol 251(2):95–103PubMedCrossRefGoogle Scholar
  8. Carvalho CLM, Chew E, Hashemy SI, Lu J, Holmgren A (2008) Inhibition of the human thioredoxin system: a molecular mechanism of mercury toxicity. J Biol Chem 283:11913–11923PubMedCrossRefGoogle Scholar
  9. Coppi MV, Leang C, Sandler SJ, Lovley DR (2001) Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180–3187PubMedCrossRefGoogle Scholar
  10. El-Demerdash F (2001) Effects of selenium and mercury on the enzymatic activities and lipid peroxidation in brain, liver, and blood of rats. J Environ Sci Health B 36(4):489–499PubMedCrossRefGoogle Scholar
  11. Fahey RC, Brown WC, Adams WB, Worsham MB (1978) Occurrence of glutathione in bacteria. J Bacteriol 133(3):1126–1129PubMedGoogle Scholar
  12. Feldman E (2004) Thiobarbituric acid reactive substances (TBARS) assay. Animal models of diabetic complications consortium (AMDCC protocols). Version 1:1–3Google Scholar
  13. Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72(1):457–464PubMedCrossRefGoogle Scholar
  14. Gabriel MC, Williamson DG (2004) Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environ Geochem Health 26(4):421–434PubMedCrossRefGoogle Scholar
  15. Gao H, Barua S, Liang Y, Wu L, Dong Y, Reed S, Chen J, Culley D, Kennedy D, Yang Y (2010) Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration. Microb Biotechnol 3(4):455–466PubMedCrossRefGoogle Scholar
  16. Gstraunthaler G, Pfaller W, Kotanko P (1983) Glutathione depletion and in vitro lipid peroxidation in mercury or maleate induced acute renal failure. Biochem Pharmacol 32(19):2969–2972PubMedCrossRefGoogle Scholar
  17. Hansen JM, Zhang H, Jones DP (2006) Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic Biol Med 40(1):138–145PubMedCrossRefGoogle Scholar
  18. Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966PubMedGoogle Scholar
  19. Hungate R (1969) A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132CrossRefGoogle Scholar
  20. Jiang D, Heald SM, Sham T, Stillman MJ (1994) Structures of the cadmium, mercury, and zinc thiolate clusters in metallothionein: XAFS study of Zn7-MT, Cd7-MT, Hg7-MT, and Hg18-MT formed from rabbit liver metallothionein 2. J Am Chem Soc 116(24):11004–11013CrossRefGoogle Scholar
  21. Kerin EJ, Gilmour CC, Roden E, Suzuki M, Coates J, Mason R (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72(12):7919–7921PubMedCrossRefGoogle Scholar
  22. Kobal AB, Horvat M, Prezelj M, Briški AS, Krsnik M, Dizdarevič T, Mazej D, Falnoga I, Stibilj V, Arnerič N (2004) The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. J Trace Elem Med Biol 17(4):261–274PubMedCrossRefGoogle Scholar
  23. Lu TH, Chen CH, Lee MJ, Ho TJ, Leung YM, Hung DZ, Yen CC, He TY, Chen YW (2010) Methylmercury chloride induces alveolar type II epithelial cell damage through an oxidative stress-related mitochondrial cell death pathway. Toxicol Lett 194(3):70–78PubMedCrossRefGoogle Scholar
  24. Lund B-O, Miller DM, Woods JS (1991) Mercury-induced H2O2 production and lipid peroxidation in vitro in rat kidney mitochondria. Biochem Pharmacol 42 Suppl:S181–S186PubMedCrossRefGoogle Scholar
  25. Lund B-O, Miller DM, Woods JS (1993) Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem Pharmacol 45(10):2017–2024PubMedCrossRefGoogle Scholar
  26. Masip L, Veeravalli K, Georgiou G (2006) The many faces of glutathione in bacteria. Antioxid Redox Signal 8(5–6):753–762. doi:10.1089/ars.2006.8.753 PubMedCrossRefGoogle Scholar
  27. Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36(1):3–11PubMedCrossRefGoogle Scholar
  28. Mousavi A, Chavez RD, Ali A-MS, Cabaniss SE (2011) Mercury in natural waters: a mini-review. Environ Forensics 12(1):14–18. doi:10.1080/15275922.2010.547549 CrossRefGoogle Scholar
  29. Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240(4857):1319–1321PubMedCrossRefGoogle Scholar
  30. Nascimento AM, Chartone-Souza E (2003) Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet Mol Res 2(1):92–101PubMedGoogle Scholar
  31. Qin J, Clore GM, Gronenborn AM (1994) The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin. Structure 2(6):503–522PubMedCrossRefGoogle Scholar
  32. Ranchou-Peyruse M, Monperrus M, Bridou R, Duran R, Amouroux D, Salvado J, Guyoneaud R (2009) Overview of mercury methylation capacities among anaerobic bacteria including representatives of the sulphate-reducers: implications for environmental studies. Geomicrobiol J 26(1):1–8CrossRefGoogle Scholar
  33. Sasse J, Gallagher SR (2001) Detection of proteins on blot transfer membranes. Current protocols in molecular biology. Greene Publishing Associates and Wiley Interscience, New YorkGoogle Scholar
  34. Schaefer JK, Morel FM (2009) High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat Geosci 2(2):123–126CrossRefGoogle Scholar
  35. Schaefer JK, Letowski J, Barkay T (2002) mer-Mediated resistance and volatilization of Hg(II) under anaerobic conditions. Geomicrobiol J 19(1):87–102CrossRefGoogle Scholar
  36. Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FM (2011) Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 108(21):8714–8719PubMedCrossRefGoogle Scholar
  37. Schulter K (2000) Review: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environ Geol 39:249–271CrossRefGoogle Scholar
  38. Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34(1):43–63CrossRefGoogle Scholar
  39. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336PubMedCrossRefGoogle Scholar
  40. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Review: environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18(3):149–175PubMedCrossRefGoogle Scholar
  41. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31(3):241–293CrossRefGoogle Scholar
  42. Ung C, Lam S, Hlaing M, Winata C, Korzh S, Mathavan S, Gong Z (2010) Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation. Bmc Genomics 11(1):212PubMedCrossRefGoogle Scholar
  43. Vandeputte C, Guizon I, Genestie-Denis I, Vannier B, Lorenzon G (1994) A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol. Cell Biol Toxicol 10(5–6):415–421PubMedCrossRefGoogle Scholar
  44. Virtanen JK, Voutilainen S, Rissanen TH, Mursu J, Tuomainen T-P, Korhonen MJ, Valkonen V-P, Seppänen K, Laukkanen JA, Salonen JT (2005) Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. Arterioscler Thromb Vasc Biol 25(1):228–233PubMedGoogle Scholar
  45. Virtanen JK, Rissanen TH, Voutilainen S, Tuomainen T-P (2007) Mercury as a risk factor for cardiovascular diseases. J Nutr Biochem 18(2):75–85PubMedCrossRefGoogle Scholar
  46. Wataha JC, Lewis JB, McCloud VV, Shaw M, Omata Y, Lockwood PE, Messer RL, Hansen JM (2008) Effect of mercury (II) on Nrf2, thioredoxin reductase-1 and thioredoxin-1 in human monocytes. Dent Mater 24(6):765–772PubMedCrossRefGoogle Scholar
  47. Wiatrowski HA, Ward PM, Barkay T (2006) Novel reduction of mercury(II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ Sci Technol 40(21):6690–6696PubMedCrossRefGoogle Scholar
  48. Zalups RK, George Cherian M (1992) Renal metallothionein metabolism after a reduction of renal mass. II. Effect of zinc pretreatment on the renal toxicity and intrarenal accumulation of inorganic mercury. Toxicology 71(1):103–117PubMedCrossRefGoogle Scholar
  49. Zalups RK, Lash LH (1997) Depletion of glutathione in the kidney and the renal disposition of administered inorganic mercury. Drug Metab Dispos 25(4):516–523PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yingjiao Wang
    • 1
  • Tyler Robison
    • 1
  • Heather Wiatrowski
    • 1
  1. 1.Department of BiologyClark UniversityWorcesterUSA

Personalised recommendations