Skip to main content
Log in

First-principles electronic structure study of rhizoferrin and its Fe(III) complexes

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

We have determined the structure and coordination chemistry of rhizoferrin (Rf), which is a particular type of siderophore, and its Fe(III) complexes using density functional theory calculations. Our results show that the Fe(III) ion binds in an octahedral coordination, with a low-spin (S = 1/2) charge-neutral chiral complex having the largest binding energy of the investigated complexes. We have also calculated nuclear magnetic resonance parameters, such as chemical shifts for 1H and 13C, and indirect nuclear spin–spin couplings for 1H–1H and 13C–1H in free Rf and in a low-spin neutral Rf metal complex, as well as nuclear quadrupole interaction parameters, such as asymmetry parameter and nuclear quadrupole coupling constants for 14N. Our calculated values for the chemical shifts for free Rf are in excellent agreement with experimental data while the calculated NMR parameters for Fe(III) complexes are predictions for future experimental work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abergel RJ, Warner JA, Shuh DK, Raymond KN (2006) Enterobactin protonation and iron release: structural characterization of the salicylate coordination shift in ferric enterobactin. J Am Chem Soc 128:8920–8931

    Article  PubMed  CAS  Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior 38:3098–3100

    CAS  Google Scholar 

  • Bertini I, Turano P, Vila A (1993) Nuclear magnetic resonance of paramagnetic metalloproteins. Chem Rev 93:2833–2932

    Article  Google Scholar 

  • Bullen JJ, Griffiths E (1987) Iron and infection—molecular, physiological and clinical aspects. Wiley, New York

    Google Scholar 

  • Carrano CJ, Drechsel H, Kaiser D, Jung G, Matzanke B, Winkelmann G, Rochel N, AlbrechtGary AM (1996) Coordination chemistry of the carboxylate type siderophore rhizoferrin: the iron(III) complex and its metal analogs. Inorg Chem 35(22):6429–6436

    Article  PubMed  CAS  Google Scholar 

  • Das TP, Hahn EL (1957) Nuclear quadrupole resonance spectroscopy. Academic, New York

    Google Scholar 

  • Das TP, Hahn EL (1958) Nuclear quadrupole resonance spectroscopy. In: Seitz F, Turnbull D (eds) Solid state physics, supplement 1. Academic, New York

    Google Scholar 

  • Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724

    Article  CAS  Google Scholar 

  • Drechsel H, Metzger J, Freund S, Jung G, Boelaert JR, Winkelmann G (1991) Rhizoferrin—a novel siderophore from the fungus Rhizopus microsporus var. rhizopodiformis. Biol Metals 4:238–243

    Article  CAS  Google Scholar 

  • Drechsel H, Jung G, Winkelmann G (1992) Stereochemical characterization of rhizoferrin and identification of its dehydration products. Biometals 5:141–148

    Article  CAS  Google Scholar 

  • Drechsel H, Tschierske M, Thieken A, Jung G, Zahner H, Winkelmann G (1995) The carboxylate type siderophore rhizoferrin and its analogs produced by directed fermentation. J Ind Microbiol 14:105–112

    Article  CAS  Google Scholar 

  • Edwards DC, Myneni S (2006) Near edge X-ray absorption fine structure spectroscopy of bacterial hydroxamate siderophores in aqueous solutions. J Phys Chem A 110:11809–11818

    Article  PubMed  CAS  Google Scholar 

  • Esteves M.A, Vaz A C T, Goncalves M L L S, Farkas E, Santos M A (1995) Siderophore analogues. Synthesis and chelating properties of a new macrocyclic trishydroxamate ligand. J Chem Soc, Dalton Trans 2565–2573

  • Friebolin H (1991) Basic one and two dimensional NMR spectroscopy. VCH, Weinheim

    Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford

    Google Scholar 

  • Geertsen J, Oddershede J, Raynes WT (1993) Angular dependence of geminal spin–spin coupling constants in a prototype CH2 group. J(H,H) versus interbond angle in methane. Magn Reson Chem 31(8):722–725

    Article  CAS  Google Scholar 

  • Goldman Domagal SD et al (2008) Quantum chemical study of the Fe(III)-desferrioxamine B siderophore complex—electronic structure, vibrational frequencies, and equilibrium Fe-isotope fractionation. Geochim Cosmochim Acta. doi:10.1016/j.gca.2008.09.031

    Google Scholar 

  • Griffiths E (1991) Iron and bacterial virulence-a brief overview. Biol Met 4:7–13

    Article  PubMed  CAS  Google Scholar 

  • Han S, Zaniewski RP, Marr ES, Lacey BM, Tomaras AP, Evdokimov A, Miller RJ, Shanmugasundaram V (2010) Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of pseudomonas aeruginosa. Proc Natl Acad Sci USA 107:22002–22007

    Article  PubMed  CAS  Google Scholar 

  • Hehre WJ, Ditchfield R, Pople JA (1972) Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  • Heinisch L, Wittman S, Stoiner T, Scherlitz-Hofmann I, Ankel-Fuchs D, Möllmann U (2003) Synthesis and biological activity of tris- and tetrakiscatecholate siderophores based on poly-aza alkanoic acids or alkylbenzoic acids and their conjugates with beta-lactam antibiotics. Arzneim-Forschung Drug Res 53:188

    CAS  Google Scholar 

  • Hilder R, Kong X (2009) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  Google Scholar 

  • Holinsworth B, Martin J (2009) Siderophore production by marine-derived fungi. Biometals 22:625–632

    Article  PubMed  CAS  Google Scholar 

  • Klessinger M, Bolte P (1988) Hybridization and valence angle dependence of geminal NMR coupling constants. J Mol Struct (Theochem) 169:119

    Article  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–790

    Article  CAS  Google Scholar 

  • Liu J, Obando D, Schipanski LK, Witting PK, Kalinowski DS, Richardson DR, Codd R (2010) Conjugates of desferrioxamine B(DFOB) with derivatives of adamantane or with orally available chelators as potential agents for treating iron overload. J Med Chem 53:1370–1382

    Article  PubMed  CAS  Google Scholar 

  • Maciel GE, McIver JW, Ostlund NS, Pople JA (1970) Approximate self-consistent molecular orbital theory of nuclear spin coupling. III. Geminal proton–proton coupling constants. J Am Chem Soc 92(14):4151–4157

    Article  CAS  Google Scholar 

  • Möllmann U, Heinisch L, Bauernfeind A, Köhler T, Ankel-Fuchs D (2009) Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals 22:615–624

    Article  PubMed  Google Scholar 

  • Muller N, Pritchard DE (1959) C13 splittings in proton magnetic resonance spectra I. Hydrocarbons. J Chem Phys 31:768–771

    Article  CAS  Google Scholar 

  • Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    PubMed  CAS  Google Scholar 

  • O’Konski CT, Ha TK (1968) Interpretation of nuclear quadrupole coupling in nitrogen containing molecules with ab initio molecular-orbital wavefunctions. J Chem Phys 49(12):5354–5361

    Article  Google Scholar 

  • Pierre JL, Gautier-Luneau (2000) Iron and citric acid: a fuzzy chemistry of ubiquitous biological relevance. BioMetals 13:91–96

    Article  PubMed  CAS  Google Scholar 

  • Raghunathan K, Andriessen J, Ray SN, Das TP (1980) Explanation of nuclear quadrupole interaction in 14N “spherical” atomic ground state. Phys Rev Lett 44(5):312–315

    Article  CAS  Google Scholar 

  • Ramsey NF (1953) Electron coupled interactions between nuclear spins in molecules. Phys Rev 91:303

    Article  CAS  Google Scholar 

  • Rivault F, Liébert C, Burger A, Hoegy F, Abdallah MH, Schalk IJ, Mislin GL (2007) Synthesis of pyochelin-norfloxacin conjugates. Bioorg Med Chem Lett 17:640–644

    Article  PubMed  CAS  Google Scholar 

  • Roosenberg JM, Lin YM, Lu Y (2000) Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem 7:159–197

    Article  PubMed  CAS  Google Scholar 

  • Tschierske M, Drechsel H, Jung G, Zahner H (1996) Production of rhizoferrin and new analogues obtained by directed fermentation. Appl Microbiol Biotechnol 45:664–670

    Article  CAS  Google Scholar 

  • Watanabe NA, Nagasu T, Katsu K, Kitoh K (1987) E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrob Agents Chemother 31(4):497–504

    Article  PubMed  CAS  Google Scholar 

  • Weinberg ED (1990) Cellular iron metabolism in health and disease. Drug Metab Rev 22:531–579

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Argonne National Laboratory is a US DOE Science Laboratory operated under contract no. DE-AC02-06CH11357 by UChicago Argonne, LLC. The research was performed, in part, at Argonne National Laboratory as a research participant in the Visiting Faculty Program. The program is administered by Argonne’s Division of Communication, Education, and Public Affairs (CEPA) with funding provided by the U.S. Department of Energy. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. The authors acknowledge the University of Central Florida Stokes Advanced Research Computing Center for providing computational resources and support that have contributed to results reported herein. URL: http://webstokes.ist.ucf.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olle Heinonen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1418 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubey, A., Heinonen, O. First-principles electronic structure study of rhizoferrin and its Fe(III) complexes. Biometals 26, 1003–1012 (2013). https://doi.org/10.1007/s10534-013-9677-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9677-4

Keywords

Navigation