Skip to main content
Log in

Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Tea [Camellia sinensis (L.) O. Kuntze] is an aluminum (Al) hyperaccumulator plant and is commercially important due to its high content of antioxidants. Although Al induced growth is well-known for the plants growing in acid soil, yet the cause underlying the stimulatory effect of Al has not been fully understood. To investigate the possible role of Al in growth induction, we studied morphological, physiological as well as biochemical changes of tea plant under different Al concentrations (0–4,000 μM). In hydroponics, Al (15 μM), enhanced shoot and root growth, but at higher concentrations, it caused oxidative damage which culminated in a cascade of biochemical changes, Al content increased concurrently with the maturity of the leaf as well as stem tissues than their younger counterparts. Hematoxylin staining indicated that Al accumulation started after 6 h of exposure in the tips of young roots and accumulation was dose dependent. The physiological parameters such as pigments, photosynthetic rate, transpiration and stomatal conductance were declined due to Al toxicity. Alteration in activated oxygen metabolism was also evidenced by increasing lipid peroxidation, membrane injury, evolution of superoxide anions and accumulation of H2O2. Contents of phenols initially exhibited an acceleration which gradually plummeted at higher levels whereas total sugar and starch contents decimated beyond 15 μM of Al concentration. Activities of antioxidant defense enzymes were increased with the elevated concentration of Al. Expression of citrate synthase gene was up-regulated in the mature leaves, young as well as old roots simultaneously with increased concentration of Al in those parts; indicating the formation of Al-citrate complex. These results cooperatively specified that Al concentration at lower level promoted growth but turned out to be a stressor at elevated stages indicating the sensitivity of the cultivar (T-78) to Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel-Basset R, Ozuka S, Demiral T, Furuichi T, Sawatani I, Baskin TI, Matsumoto H, Yamamoto Y (2010) Aluminum reduces sugar uptake in tobacco cell cultures: a potential cause of inhibited elongation but not of toxicity. J Exp Bot 61:1597–1610

    Article  CAS  PubMed  Google Scholar 

  • Aftab T, Khan MMA, Idrees M, Naeem M, Moinuddin (2010) Effects of alluminum exposures on growth, photosynthetic efficiency, lipid peroxidation and artemisinin content of Artemisia annua L. J Phytol 2:23–37

    Google Scholar 

  • Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ (2003) Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola over-expressing a mitochondrial citrate synthase. Plant Physiol 132:2205–2217

    Article  CAS  PubMed  Google Scholar 

  • Baligar VC, Smedley MD (1989) Responses of forage grasses to aluminum in solution culture. J Plant Nutr 12:783–796

    Article  Google Scholar 

  • Barone P, Rosellini D, LaFayette P, Bouton J, Veronesi F, Parrott W (2008) Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa. Plant Cell Rep 27:893–901

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bray HG, Thorpe WV (1954) Analysis of phenolic compounds of interest in metabolism. Methods Biochem Anal 1:27–52

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidase. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic, New York, pp 764–775

    Chapter  Google Scholar 

  • Chen L-S, Qi Y-P, Jiang H-X, Yang L-T, Yang G-H (2010) Photosynthesis and photoprotective systems of plants in response to aluminum toxicity. Afr J Biotechnol 9:9237–9247

    CAS  Google Scholar 

  • Das A, Das S, Mondal TK (2012) Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization. Plant Mol Biol Rep. doi:10.1007/s11105-012-0422-x

    Google Scholar 

  • Deng W, Luo K, Li Z, Yang Y, Hu N, Wu Y (2009) Over-expression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance. Planta 230:355–365

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids-a gold mine for metabolic engineering. Trends Plant Sci 4:394–400

    Article  PubMed  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42

    Article  Google Scholar 

  • Foy CD (1983) The physiology of plant adaptation to metal stress. Iowa State J Res 57:355–391

    CAS  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2005) Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant Soil 276:133–141

    Article  CAS  Google Scholar 

  • Hedge JE, Hofreiter BT (1962) Determination of reducing sugars and carbohydrates. Methods in carbohydrate chemistry, vol I. Analysis and preparation of sugars, Academic Press, New York, pp 380–398

  • Jordan CM, DeVay JE (1990) Lysosome disruption associated with hyper-sensitive reaction in the potato-Phytophthora infestans host-parasite interaction. Physiol Plant Pathol 36:221–236

    Article  CAS  Google Scholar 

  • Kinraide TB (1993) Aluminum enhancement of plant growth in acid rooting media. A case of reciprocal alleviation of toxicity by two toxic cations. Physiol Plant 88:619–625

    Article  CAS  Google Scholar 

  • Konishi S (1992) Promotive effects of aluminium on tea plant growth. Jpn Agric Res Q 26:26–33

    CAS  Google Scholar 

  • Konishi S, Miyamato S, Taki T (1985) Stimulatory effects of aluminum on tea plants grown under low and high phosphorus supply. Soil Sci Plant Nutr 31:361–363

    Article  CAS  Google Scholar 

  • Li C, Xu H, Xu J, Chun X, Ni D (2011) Effects of aluminum on ultrastructure and antioxidant activity in leaves of tea plant. Acta Physiol Plant 33:973–978

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41:383–390

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997) Internal detoxification mechanism of Al in Hydrangea. Plant Physiol 113:1033–1039

    CAS  PubMed  Google Scholar 

  • Ma JF, Taketa S, Yang ZM (2000) Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol 122:687–694

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Hirasawa E, Morimura S, Takahashi E (1976) Localization of aluminum in tea leaves. Plant Cell Physiol 17:627–631

    CAS  Google Scholar 

  • Mondal TK, Bhattacharya A, Laxmikumaran M, Ahuja PS (2004) Recent advance in tea Biotechnology. Plant Cell Tissue Org Cult 75:795–856

    Google Scholar 

  • Morita A, Horie H, Fujii Y, Takatsu S, Watanabe N, Yagi A, Yokota H (2004) Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.). Phytochemistry 65:2775–2780

    Article  CAS  PubMed  Google Scholar 

  • Morita A, Yanagisawa O, Takatsu S, Maeda S, Hiradate S (2008) Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinsensis (L) Kuntze). Phytochemistry 69:147–153

    Article  CAS  PubMed  Google Scholar 

  • Murti GSR, Sarma VAK, Rengasamy P (1974) Spectrophotometric determination of aluminum with aluminon. Indian J Technol 12:270–271

    CAS  Google Scholar 

  • Nagata T, Hayatsu M, Kosuge N (1992) Identification of aluminum forms in tea leaves by 27Al NMR. Phytochemistry 31:1215–1218

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubar Y, Yamaguchi Y, Shinozaki K, Shinozaki K (1999) Antisense suppression of the proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Ownby JD (1993) Mechanisms of reaction of hematoxylin with aluminum-treated wheat roots. Physiol Plant 87:371–380

    Article  CAS  Google Scholar 

  • Peixoto PH, Da Matta FM, Cambraia J (2002) Responses of the photosynthetic apparatus to aluminum stress in two sorghum cultivars. J Plant Nutr 25:821–832

    Article  CAS  Google Scholar 

  • Pereira LB, Tabaldi LA, Goncalves JF, Juckeoski GO, Pauletto MM, Weis SN, Nicoloso FT, Bocher D, Rocha JBT, Schetinger MRC (2006) Effect of Aluminum on δ-aminolevulinic acid dehydratase (ALA-D) and the development of cucumber (Cucumis sativus). Environ Exp Bot 57:106–115

    Article  CAS  Google Scholar 

  • Pereira LB, de A Mazzanti CM, Cargnelutti D, Rossato LV, Gonçalves JF, Calgaroto N, Dressler V, Nicoloso FT, Federizzi LC, Morsch VM, Schetinger MRC (2011) Differential responses of oat genotypes: oxidative stress provoked by aluminum. Biometals 24:73–83

    Article  CAS  PubMed  Google Scholar 

  • Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci 18:823–827

    Article  CAS  Google Scholar 

  • Poschenrieder C, Gunsé B, Corrales I, Barceló J (2008) A glance into aluminum toxicity and resistance in plants. Sci Total Environ 400:356–368

    Article  CAS  PubMed  Google Scholar 

  • Ruan J, Ma L, Shi Y (2006) Aluminum in tea plantations: mobility in soils and plants, and the influence of nitrogen fertilization. Environ Geochem Health 28:519–528

    Article  CAS  PubMed  Google Scholar 

  • Sachs MM, Ho T-HD (1986) Alteration of gene expression during environmental stress in plants. Annu Rev Plant Physiol 37:363–376

    Article  CAS  Google Scholar 

  • Sagisaka S (1976) The occurrence of peroxide in a perennial plant Populas gelrica. Plant Physiol 57:308–309

    Article  CAS  PubMed  Google Scholar 

  • Salin ML (1988) Toxic oxygen species and protective systems of the chloroplast. Physiol Plantarum 72:681–689

    Article  CAS  Google Scholar 

  • Samac DA, Tesfaye M (2003) Plant improvement for tolerance to aluminum in acid soils—a review. Review of Plant Biotechnology and Applied Genetics. Plant Cell Tissue Org Cult 75:189–207

    Article  CAS  Google Scholar 

  • Schier GA, McQuattie CJ (2002) Stimulatory effects of aluminum on growth of sugar maple seedlings. J Plant Nutr 25:2583–2589

    Article  CAS  Google Scholar 

  • Shen R, Ma JF (2001) Distribution and mobility of aluminum in an Al-accumulating plant, Fagopyrum esculentum Moench. J Exp Bot 52:1683–1687

    Article  CAS  PubMed  Google Scholar 

  • Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Sasakawa H, Matsumoto H (2005) Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-Regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol 138:287–296

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246

    Article  CAS  PubMed  Google Scholar 

  • Taylor GJ (1991) Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top Plant Biochem Physiol 10:57–93

    CAS  Google Scholar 

  • Tolrà R, Vogel-Mikuš K, Hajiboland R, Kump P, Pongrac P, Kaulich B, Gianoncelli A, Babin V, Barceló J, Regvar M, Poschenrieder C (2011) Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. J Plant Res 124:165–172

    Article  PubMed  Google Scholar 

  • Upadhyaya H, Panda SK (2004) Responses of Camellia sinensis to drought and rehydration. Biol Plantarum 48:597–600

    Article  Google Scholar 

  • Wada H, Koshiba T, Matsui T, Sato M (1998) Involvement of peroxidase in differential sensitivity to γ-radiation in seedlings of two Nicotiana species. Plant Sci 132:109–119

    Article  CAS  Google Scholar 

  • Watanabe T, Osaki M, Yoshihara T, Tadano T (1998) Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L. Plant Soil 201:165–173

    Article  CAS  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1996) Oxidative damage and deference mechanisms in primary leaves of Phaseolus vulgaris. Physiol Plant 96:506–512

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to late Dr. R S Saha, Scientist, Darjeeling Tea Research Centre, Tea Board, Darjeeling, West Bengal for providing the tea plantlets and Mr. Pratap Subba for his technical help. The financial assistance from Tea Board, Govt of India is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Mondal.

Additional information

Mainaak Mukhopadyay and Pranay Bantawa contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadyay, M., Bantawa, P., Das, A. et al. Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress. Biometals 25, 1141–1154 (2012). https://doi.org/10.1007/s10534-012-9576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9576-0

Keywords

Navigation