Skip to main content
Log in

Influence of siderophore pyoverdine synthesis and iron-uptake on abiotic and biotic surface colonization of Pseudomonas putida S11

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Fluorescent pseudomonads produce a characteristic fluorescent pigment, pyoverdines as their primary siderophore for iron acquisition under iron-limiting conditions. Here, we report the identification of a random transposon mutant IST3 of Pseudomonas putida S11 showing tolerance to iron starvation stress condition and increased pyoverdine production. The insertion of the Tn5 transposon was found to be in pstS gene of pstSR operon encoding sensor histidine kinase protein of the two-component signal transduction system. A pyoverdine negative derivative of IST3 mutant constructed was sensitive to iron stress condition. It indicated that increased survival of IST3 under iron-limiting condition was due to higher pyoverdine production. The iron starvation tolerant mutant (IST3) exhibited enhanced pyoverdine-mediated iron uptake in minimal medium which significantly improved its biofilm formation, seed adhesion and competitive root colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA 102:11076–11081

    Article  PubMed  CAS  Google Scholar 

  • Beare PA, For RJ, Martin LW, Lamont IL (2003) Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol Microbiol 47:195–207

    Article  PubMed  CAS  Google Scholar 

  • Bloemberg GV, O’Toole GA, Lugtenberg BJ, Kolter R (1997) Green fluorescent protein as a marker for Pseudomonas spp. Appl Environ Microbiol 63:4543–4551

    PubMed  CAS  Google Scholar 

  • Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645

    Article  PubMed  CAS  Google Scholar 

  • de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572

    PubMed  Google Scholar 

  • Deziel E, Comeau Y, Villemur R (2001) Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183:1195–1204

    Article  PubMed  CAS  Google Scholar 

  • Espinosa-Urgel M, Salido A, Ramos JL (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182:2363–2369

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Pinar R, Ramos JL, Rodriguez-Herva JJ, Espinosa-Urgel M (2008) A two-component regulatory system integrates redox state and population density sensing in Pseudomonas putida. J Bacteriol 190:7666–7674

    Article  PubMed  CAS  Google Scholar 

  • Geels FP, Schmidt EDL, Schippers B (1985) The use of 8-hydroxyquinoline for the isolation and prequalification of plant growth-stimulating rhizosphere pseudomonads. Biol Fert Soils 1:167–173

    Article  CAS  Google Scholar 

  • Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host range Flp-FRT recombination system for site specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86

    Article  PubMed  CAS  Google Scholar 

  • Imlay JA, Chin SM, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642

    Article  PubMed  CAS  Google Scholar 

  • Kawakami T, Kuroki M, Ishii M, Igarashi Y, Arai H (2010) Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa. Environ Microbiol 12:1399–1412

    PubMed  CAS  Google Scholar 

  • Kilstrup M, Kristiansen KN (2000) Rapid genome walking: a simplified oligo-cassette mediated polymerase chain reaction using a single genome-specific primer. Nucleic Acids Res 28:e55

    Article  PubMed  CAS  Google Scholar 

  • Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 99:7072–7077

    Article  PubMed  CAS  Google Scholar 

  • Lemanceau P, Bauer P, Kraemer S, Briat JF (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535

    Article  CAS  Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Article  PubMed  CAS  Google Scholar 

  • Mirleau P, Delorme S, Philippot L, Meyer JM, Mazurier S, Lemanceau P (2000) Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiol Ecol 34:35–44

    Article  PubMed  CAS  Google Scholar 

  • Molina MA, Godoy P, Ramos-Gonzalez MI, Munoz N, Ramos JL, Espinosa-Urgel M (2005) Role of iron and the TonB system in colonization of corn seeds and roots by Pseudomonas putida KT2440. Environ Microbiol 7:443–449

    Article  PubMed  CAS  Google Scholar 

  • O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461

    Article  PubMed  Google Scholar 

  • Rameshkumar N, Arasu VT, Gunasekaran P (2005) Biodiversity of rice (Oryza sativa L.) and sugarcane (Saccharum officinarum L.) rhizosphere pseudomonads. Indian J Exp Biol 43:84–89

    PubMed  CAS  Google Scholar 

  • Ramos-Gonzalez MI, Campos MJ, Ramos JL (2005) Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vivo expression technology capture and identification of root-activated promoters. J Bacteriol 187:4033–4041

    Article  PubMed  CAS  Google Scholar 

  • Robin A, Mazurier S, Mougel C, Vansuyt G, Corberand T, Meyer JM, Lemanceau P (2007) Diversity of root-associated fluorescent pseudomonads as affected by ferritin overexpression in tobacco. Environ Microbiol 9:1724–1737

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555

    Article  PubMed  CAS  Google Scholar 

  • Vasil ML (2007) How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals 20:587–601

    Article  PubMed  CAS  Google Scholar 

  • Visca P, Leoni L, Wilson MJ, Lamont IL (2002) Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45:1177–1190

    Article  PubMed  CAS  Google Scholar 

  • West SE, Schweizer HP, Dall C, Sample AK, Runyen-Janecky LJ (1994) Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148:81–86

    Article  PubMed  CAS  Google Scholar 

  • Yeowell HN, White JR (1982) Iron requirement in the bactericidal mechanism of streptonigrin. Antimicrob Agents Chemother 22:961–968

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Indian Council for Agricultural Research (NBAIM/AMAAS/2007-2012/MG (5)/PG/BG/3), India. The authors thank H.P.Schweizer for plasmids pUCP24 and pEX18Tc and F.Wisniewski-Dye for E. coli S17-1 λ-pir strain. Support facilities from Centre for Advanced studies in Functional Genomics, Centre for Excellence in Genomic Sciences, UGC-Networking Resource Centre in Biological Sciences and DBT-MKU Interdisciplinary Life Science Programme for Advanced Research and Education are gratefully acknowledged. PP gratefully acknowledges the valuable technical assistance and discussions from M. Jeya and S. Thiagarajan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramasamy Gunasekaran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponraj, P., Shankar, M., Ilakkiam, D. et al. Influence of siderophore pyoverdine synthesis and iron-uptake on abiotic and biotic surface colonization of Pseudomonas putida S11. Biometals 25, 1113–1128 (2012). https://doi.org/10.1007/s10534-012-9574-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9574-2

Keywords

Navigation