Skip to main content

Advertisement

Log in

Differential gene regulation by VIV and VV ions in the branchial sac, intestine, and blood cells of a vanadium-rich ascidian, Ciona intestinalis

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Ascidians are hyperaccumulators that have been studied in detail. Proteins and genes involved in the accumulation process have been identified, but regulation of gene expression related to vanadium accumulation remains unknown. To gain insights into the regulation of gene expression by vanadium in a genome-wide manner, we performed a comprehensive study on the effect of excess vanadium ions on a vanadium-rich ascidian, Ciona intestinalis, using a microarray. RT-PCR and enzyme activity assay were performed from the perspective of redox and accumulation of metal ions in each tissue. Glutathione metabolism-related proteins were significantly up-regulated by VIV treatment. Several genes involved in the transport of vanadium and protons, such as Nramp and V-ATPase, were significantly up-regulated by VIV treatment. We observed significant up-regulation of glutathione synthesis and degradation pathways in the intestine and branchial sac. In blood cells, expression of Ci-Vanabin4, glutathione reductase activity, glutathione levels, and vanadium concentration increased after VIV treatment. VIV treatment induced significant changes related to vanadium exclusion, seclusion, and redox pathways in the intestine and branchial sac. It also induced an enhancement of the vanadium reduction and accumulation cascade in blood cells. These differential responses in each tissue in the presence of excess vanadium ions suggest that vanadium accumulation and reduction may have regulatory functions. This is the first report on the gene regulation by the treatment of vanadium-rich ascidians with excess vanadium ions. It provided much information for the mechanism of regulation of gene expression related to vanadium accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamis PD, Mannarino SC, Eleutherio EC (2009) Glutathione and gamma-glutamyl transferases are involved in the formation of cadmium-glutathione complex. FEBS Lett 583:1489–1492

    Article  PubMed  CAS  Google Scholar 

  • Balmer Y, Vensel WH, Cai N, Manieri W, Schurmann P et al (2006) A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. Proc Natl Acad Sci U S A 103:2988–2993

    Article  PubMed  CAS  Google Scholar 

  • Boas LV, Pessoa JC (1987) Vanadium. In: Wilkinson G (ed) Comprehensive coordination chemistry, vol 3. Pergamon Press, Oxford, pp 453–583

  • Cantley J, C L, Josephson L, Warner R, Yanagisawa M, Lechene C et al (1977) Vanadate is a potent (Na, K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem 252:7421–7423

    PubMed  CAS  Google Scholar 

  • Capella MAM, Valente RC, Capella LS (2007) Cytotoxicity of vanadium compounds. In: Alves MA (ed) Vanadium biochemistry. Research Signpost, Kerala, pp 323–339

    Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Dessi A, Micera G, Sanna D (1993) EPR investigation of the oxovanadium(IV) complexes formed by the tripeptide glutathione and some related ligands in aqueous solution. J Inorg Biochem 52:275–286

    Article  PubMed  CAS  Google Scholar 

  • Fedders H, Michalek M, Grotzinger J, Leippe M (2008) An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochem J 416:65–75

    Article  PubMed  CAS  Google Scholar 

  • Frank P, Hedman B, Carlson RMK, Hodgson KO (1994) Interaction of vanadium and sulfate in blood cells from the tunicate Ascidia seratodes: observations using X-ray absorption edge structures and EPR spectroscopies. Inorg Chem 33:3794–3803

    Article  CAS  Google Scholar 

  • Frank P, Hedman B, Hodgson KO (1999) Sulfur allocation and vanadium—sulfate interactions in whole blood cells from the tunicate Ascidia seratodes, investigated using X-ray absorption spectrometry. Inorg Chem 38:260–270

    Article  CAS  Google Scholar 

  • Fujikawa T, Munakata T, Kondo SI, Satoh N, Wada S (2009) Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress. Cell Stress Chaperones 15:193–204

    Article  PubMed  Google Scholar 

  • Gladysheva TB, Oden KL, Rosen BP (1994) Properties of the arsenate reductase of plasmid R773. Biochemistry 33:7288–7293

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 86:6838–6842

    Article  PubMed  CAS  Google Scholar 

  • Hamada T, Asanuma M, Ueki T, Hayashi F, Kobayashi N et al (2005) Solution structure of Vanabin2, a vanadium(IV)-binding protein from the vanadium-rich ascidian Ascidia sydneiensis samea. J Am Chem Soc 127:4216–4222

    Article  PubMed  CAS  Google Scholar 

  • Henze M (1911) Untersuchungen über das Blut der Ascidien. I. Mitteilung. Die Vanadiumverbindung der Blutkörperchen. Hoppe-Seyler’s Z Physiol Chem 72:494–501

    Article  CAS  Google Scholar 

  • Heyliger CE, Tahiliani AG, McNeill JH (1985) Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227:1474–1477

    Article  PubMed  CAS  Google Scholar 

  • Kanda T, Nose Y, Wuchiyama J, Uyama T, Moriyama Y et al (1997) Identification of a vanadium-associated protein from the vanadium-rich ascidian, Ascidia sydneiensis samea. Zool Sci 14:37–42

    Article  PubMed  CAS  Google Scholar 

  • Kawakami N, Ueki T, Amata Y, Kanamori K, Matsuo K et al (2009) A novel vanadium reductase, Vanabin2, forms a possible cascade involved in electron transfer. Biochim Biophys Acta 1794:674–679

    Article  PubMed  CAS  Google Scholar 

  • Mehdi K, Thierie J, Penninckx MJ (2001) Gamma-glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione. Biochem J 359:631–637

    Article  PubMed  CAS  Google Scholar 

  • Meyerovitch J, Farfel Z, Sack J, Shechter Y (1987) Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. Characterization and mode of action. J Biol Chem 262:6658–6662

    PubMed  CAS  Google Scholar 

  • Michibata H, Terada T, Anada N, Yamakawa K, Numakunai T (1986) The accumulation and distribution of vanadium, iron, and manganese in some solitary ascidians. Biol Bull 171:672–681

    Article  CAS  Google Scholar 

  • Michibata H, Iwata Y, Hirata J (1991) Isolation of highly acidic and vanadium-containing blood cells from among several types of blood cell from Ascidiidae species by density-gradient centrifugation. J Exp Zool 257:306–313

    Article  Google Scholar 

  • Michibata H, Yoshinaga M, Yoshihara M, Kawakami N, Yamaguchi N et al (2007) Genes and proteins involved in vanadium accumulation by ascidians. In: Kustin K, Costa-Pessoa J, Crans DC (eds) Vanadium the versatile metal. Oxford University Press, Oxford, pp 264–280

    Chapter  Google Scholar 

  • Pessoa JC, Tomaz I, Kiss T, Kiss E, Buglyo P (2002) The systems V(IV)O(2+)-glutathione and related ligands: a potentiometric and spectroscopic study. J Biol Inorg Chem 7:225–240

    Article  PubMed  CAS  Google Scholar 

  • Racker E (1955) Glutathione reductase from bakers’ yeast and beef liver. J Biol Chem 217:855–865

    PubMed  CAS  Google Scholar 

  • Samino S, Michibata H, Ueki T (2012) Identification of a Novel vanadium-binding protein by EST analysis on the most vanadium-rich Ascidian, Ascidia gemmata. Mar Biotechnol (NY) 14(2):143–154

    Article  CAS  Google Scholar 

  • Sasaki A, Satoh N (2007) Effects of 5-aza-2’-deoxycytidine on the gene expression profile during embryogenesis of the ascidian Ciona intestinalis: a microarray analysis. Zool Sci 24:648–655

    Article  PubMed  CAS  Google Scholar 

  • Satou Y, Yamada L, Mochizuki Y, Takatori N, Kawashima T et al (2002) A cDNA resource from the basal chordate Ciona intestinalis. Genesis 33:153–154

    Article  PubMed  CAS  Google Scholar 

  • Satou Y, Kawashima T, Kohara Y, Satoh N (2003) Large scale EST analyses in Ciona intestinalis: its application as northern blot analyses. Dev Genes Evol 213:314–318

    Article  PubMed  CAS  Google Scholar 

  • Trivedi S, Ueki T, Yamaguchi N, Michibata H (2003) Novel vanadium-binding proteins (vanabins) identified in cDNA libraries and the genome of the ascidian Ciona intestinalis. Biochim Biophys Acta 1630:64–70

    Article  PubMed  CAS  Google Scholar 

  • Ueki T, Uyama T, Kanamori K, Michibata H (1998) Isolation of cDNAs encoding subunits A and B of the vacuolar-type ATPase from the vanadium-rich ascidian, Ascidia sydneiensis samea. Zool Sci 15:823–829

    Article  CAS  Google Scholar 

  • Ueki T, Uyama T, Yamamoto K, Kanamori K, Michibata H (2000) Exclusive expression of transketolase in the vanadocytes of the vanadium-rich ascidian, Ascidia sydneiensis samea. Biochim Biophys Acta 1494:83–90

    Article  PubMed  CAS  Google Scholar 

  • Ueki T, Uyama T, Kanamori K, Michibata H (2001) Subunit C of the vacuolar-type ATPase from the vanadium-rich ascidian Ascidia sydneiensis samea rescued the pH sensitivity of yeast vma5 mutants. Mar Biotechnol 3:316–321

    Article  PubMed  CAS  Google Scholar 

  • Ueki T, Adachi T, Kawano S, Aoshima M, Yamaguchi N et al (2003a) Vanadium-binding proteins (vanabins) from a vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1626:43–50

    Article  PubMed  CAS  Google Scholar 

  • Ueki T, Yamaguchi N, Michibata H (2003b) Chloride channel in vanadocytes of a vanadium-rich ascidian Ascidia sydneiensis samea. Comp Biochem Physiol B 136:91–98

    Article  PubMed  Google Scholar 

  • Ueki T, Satake M, Kamino K, Michibata H (2008) Sequence variation of Vanabin2-like vanadium-binding proteins in blood cells of the vanadium-accumulating ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1780:1010–1015

    Article  PubMed  CAS  Google Scholar 

  • Ueki T, Furuno N, Michibata H (2011) A novel vanadium transporter of the Nramp family expressed at the vacuole of vanadium-accumulating cells of the ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1810:457–464

    Article  PubMed  CAS  Google Scholar 

  • Uyama T, Moriyama Y, Futai M, Michibata H (1994) Immunological detection of a vacuolar-type H+-ATPase in the vanadocytes of the ascidian Ascidia sydneiensis samea. J Exp Zool 270:148–154

    Article  PubMed  CAS  Google Scholar 

  • Uyama T, Kinoshita T, Takahashi H, Satoh N, Kanamori K et al (1998a) 6-Phosphogluconate dehydrogenase is a 45-kDa antigen recognized by S4D5, a monoclonal antibody specific to vanadocytes in the vanadium-rich ascidian, Ascidia sydneiensis samea. J Biochem 124:377–382

    Article  PubMed  CAS  Google Scholar 

  • Uyama T, Ueki T, Suhama Y, Kanamori K, Michibata H (1998b) A 100-kDa antigen recognized by a newly prepared monoclonal antibody specific to the vanadocytes of the vanadium-rich ascidian, Ascidia sydneiensis samea, is glycogen phosphorylase. Zool Sci 15:815–821

    Article  CAS  Google Scholar 

  • Uyama T, Yamamoto K, Kanamori K, Michibata H (1998c) Glucose-6-phosphate dehydrogenase in the pentose phosphate pathway is localized in vanadocytes of the vanadium-rich ascidian, Ascidia sydneiensis samea. Zool Sci 15:441–446

    PubMed  CAS  Google Scholar 

  • Yamaguchi N, Kamino K, Ueki T, Michibata H (2004) Expressed sequence tag analysis of vanadocytes in a vanadium-rich ascidian, Ascidia sydneiensis samea. Mar Biotechnol (NY) 6:165–174

    Article  CAS  Google Scholar 

  • Yamaguchi N, Amakawa Y, Yamada H, Ueki T, Michibata H (2006) Localization of Vanabins, vanadium-binding proteins, in the blood cells of the vanadium-rich ascidian Ascidia sydneiensis samea. Zool Sci 23:909–915

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara M, Ueki T, Watanabe T, Yamaguchi N, Kamino K et al (2005) VanabinP, a novel vanadium-binding protein in the blood plasma of an ascidian, Ascidia sydneiensis samea. Biochim Biophys Acta 1730:206–214

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga M, Ueki T, Yamaguchi N, Kamino K, Michibata H (2006) Glutathione transferases with vanadium-binding activity isolated from the vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1760:495–503

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga M, Ueki T, Michibata H (2007) Metal binding ability of glutathione transferases conserved between two animal species, the vanadium-rich ascidian Ascidia sydneiensis samea and the schistosome Schistosoma japonicum. Biochim Biophys Acta 1770:1413–1418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. K. Hirayama and Dr. Yutaka Satou at Kyoto University and the staff at the Maizuru Fisheries Research Station, Kyoto University, Maizuru Bay, Kyoto, Japan, for providing C. intestinalis, through the National Bio-Resource Project (NBRP) of the MEXT, Japan. This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (#21570077 to H. M. and #20570070 to T. U.) and a grant from the Toray Science Foundation (03-4402 to T. U.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Ueki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kume, S., Ueki, T., Matsuoka, H. et al. Differential gene regulation by VIV and VV ions in the branchial sac, intestine, and blood cells of a vanadium-rich ascidian, Ciona intestinalis . Biometals 25, 1037–1050 (2012). https://doi.org/10.1007/s10534-012-9569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9569-z

Keywords

Navigation