Skip to main content
Log in

Effects of Selenoprotein W gene expression by selenium involves regulation of mRNA stability in chicken embryos neurons

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Selenium (Se) and Selenoprotein W (SelW) plays a pivotal role in the brain development, function, and degeneration and that SelW expression in the brain may be affected by Se. However, the mechanism which Se regulates the SelW gene expression in neurons remains to be unclear. To investigate the effects of the SelW gene expression and mRNA stability induced by Se, primary cultured chicken embryos neurons derived from 8-day-old chick embryo cerebral hemispheres were treated with 10−9–10−5 mol/l Se as selenite for 3, 6, 12, 24 or 48 h, respectively. The morphology and viability of Neurons was detected. The SelW mRNA expression level and mRNA half-life was examined in Se-treated neurons. The relative low concentrations of Se enhanced the neurite outgrowth, increased the SelW mRNA levels and elevated the mRNA half-life of chick embryo neurons. In contrast, the high concentrations of Se presented neurotoxic to neurons, decreased the SelW mRNA levels and reduced the mRNA half-life of neuronal cells. These results suggest that the alteration of post-transcriptional stabilization of SelW mRNA is an important mechanism of Se-induced the elevation or reduction of the SelW expression level in chick embryo neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allmang C, Wurth L, Krol A (2009) The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim Biophys Acta 1790(11):1415–1423

    Article  PubMed  CAS  Google Scholar 

  • Amantana A, Vorachek WR, Butler JA, Costa ND, Whanger PD (2002) Effect of copper, zinc and cadmium on the promoter of selenoprotein W in glial and myoblast cells. J Inorg Biochem 91(2):356–362

    Article  PubMed  CAS  Google Scholar 

  • Bellingham J, Gregory-Evans K, Fox MF, Gregory-Evans CY (2003) Gene structure and tissue expression of human selenoprotein W, SEPW1, and identification of a retroprocessed pseudogene, SEPW1P. Biochim Biophys Acta 1627(2–3):140–146

    PubMed  CAS  Google Scholar 

  • Bermano G, Arthur JR, Hesketh JE (1996) Selective control of cytosolic glutathione peroxidase and pholipid hydroperoxide glutathione peroxidase mRNA stability by selenium supply. FEBS Lett 387(2–3):157–160

    Article  PubMed  CAS  Google Scholar 

  • Blanquicett C, Kang BY, Ritzenthaler JD, Jones DP, Hart CM (2010) Oxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radic Biol Med 48(12):1618–1625

    Article  PubMed  CAS  Google Scholar 

  • Brauer AU, Savaskan NE (2004) Molecular actions of selenium in the brain: neuroprotective mechanisms of an essential trace element. Rev Neurosci 15(1):19–32

    Article  PubMed  Google Scholar 

  • Chen J, Berry MJ (2003) Selenium and selenoproteins in the brain and brain diseases. J Neurochem 86(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Christensen MJ, Burgener KW (1992) Dietary selenium stabilizes glutathione peroxidase mRNA in rat liver. J Nutr 122(8):1620–1626

    PubMed  CAS  Google Scholar 

  • Chung YW, Jeong D, Noh OJ, Park YH, Kang SI, Lee MG et al (2009) Antioxidative role of selenoprotein W in oxidant-induced mouse embryonic neuronal cell death. Mol Cells 27(5):609–613

    Article  PubMed  CAS  Google Scholar 

  • Cline HT (2001) Dendritic arbor development and synaptogenesis. Curr Opin Neurobiol 11(1):118–126

    Article  PubMed  CAS  Google Scholar 

  • De Rubeis S, Bagni C (2010) Fragile × mental retardation protein control of neuronal mRNA metabolism: Insights into mRNA stability. Mol Cell Neurosci 43(1):43–50

    Article  PubMed  Google Scholar 

  • Gromer S, Eubel JK, Lee BL, Jacob J (2005) Human selenoproteins at a glance. Cell Mol Life Sci 62(21):2414–2437

    Article  PubMed  CAS  Google Scholar 

  • Gu QP, Sun Y, Ream LW, Whanger PD (2000) Selenoprotein W accumulates primarily in primate skeletal muscle, heart, brain and tongue. Mol Cell Biochem 204(1–2):49–56

    Article  PubMed  CAS  Google Scholar 

  • Gu QP, Ream W, Whanger PD (2002) Selenoprotein W gene regulation by selenium in L8 cells. Biometals 15(4):411–420

    Article  PubMed  CAS  Google Scholar 

  • Gwon AR, Park JS, Park JH, Baik SH, Jeong HY, Hyun DH et al (2010) Selenium attenuates A beta production and A beta-induced neuronal death. Neurosci Lett 469(3):391–395

    Article  PubMed  CAS  Google Scholar 

  • Himeno S, Imura N (2002) Selenium in nutrition and toxicology. In: Sarkar B (ed) Heavy metals in the environment, 1st edn. CRC Press, New York, pp 614–618

    Google Scholar 

  • Hoffmann PR, Berry MJ (2008) The influence of selenium on immune responses. Mol Nutr Food Res 52(11):1273–1280

    Article  PubMed  CAS  Google Scholar 

  • Hoppe B, Brauer AU, Kuhbacher M, Savaskan NE, Behne D, Kyriakopoulos A (2008) Biochemical analysis of selenoprotein expression in brain cell lines and in distinct brain regions. Cell Tissue Res 332(3):403–414

    Article  PubMed  CAS  Google Scholar 

  • Jeong DW, Kim EH, Kim TS, Chung YW, Kim H, Kim IY (2004) Different distributions of selenoprotein W and thioredoxin during postnatal brain development and embryogenesis. Mol Cells 17(1):156–159

    PubMed  CAS  Google Scholar 

  • Kim YJ, Chai YG, Ryu JC (2005) Selenoprotein W as molecular target of methylmercury in human neuronal cells is down-regulated by GSH depletion. Biochem Biophys Res Commun 330(4):1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Li JL, Gao R, Li S, Wang JT, Tang ZX, Xu SW (2010) Testicular toxicity induced by dietary cadmium in cocks and ameliorative effect by selenium. Biometals 23(4):695–705

    Article  PubMed  CAS  Google Scholar 

  • Li JL, Li HX, Li S, Jiang ZH, Xu SW, Tang ZX (2011a) Selenoprotein W gene expression in the gastrointestinal tract of chicken is affected by dietary selenium. Biometals 24(2):291–299. doi:10.1007/s10534-010-9395-0

    Google Scholar 

  • Li JL, Ruan HF, Li HX, Li S, Xu SW, Tang ZX (2011b) Molecular cloning, characterization and mRNA expression analysis of a novel selenoprotein: avian Selenoprotein W from chicken. Mol Biol Rep 38(6):4015–4022. doi:10.1007/s11033-010-0520-5

  • Loflin J, Lopez N, Whanger PD, Kioussi C (2006) Selenoprotein W during development and oxidative stress. J Inorg Biochem 100(10):1679–1684

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284(2):723–727

    Article  PubMed  CAS  Google Scholar 

  • Mangoura D, Dawson G (1993) Opioid peptides activate phospholipase D and protein kinase C-epsilon in chicken embryo neuron cultures. Proc Natl Acad Sci USA 90(7):2915–2919

    Article  PubMed  CAS  Google Scholar 

  • Nakayama A, Hill KE, Austin LM, Motley AK, Burk RF (2007) All regions of mouse brain are dependent on selenoprotein P for maintenance of selenium. J Nutr 137(3):690–693

    PubMed  CAS  Google Scholar 

  • Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31(14):e73

    Article  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  • Poirazi P, Mel BW (2001) Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29(3):779–796

    Article  PubMed  CAS  Google Scholar 

  • Ralston NV, Ralston CR, Blackwell JL 3rd, Raymond LJ (2008) Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology 29(5):802–811

    Article  PubMed  CAS  Google Scholar 

  • Savaskan NE, Brauer AU, Kuhbacher M, Eyupoglu IY, Kyriakopoulos A, Ninnemann O et al (2003) Selenium deficiency increases susceptibility to glutamate-induced excitotoxicity. FASEB J 17(1):112–114

    PubMed  CAS  Google Scholar 

  • Schweizer U, Schomburg L (2006) Selenium, selenoproteins and brain function. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium: its molecular biology and role in human health. Springer, New York, pp 233–248

    Google Scholar 

  • Schweizer U, Schomburg L, Savaskan NE (2004a) The neurobiology of selenium: lessons from transgenic mice. J Nutr 134(4):707–710

    PubMed  CAS  Google Scholar 

  • Schweizer U, Brauer AU, Kohrle J, Nitsch R, Savaskan NE (2004b) Selenium and brain function: a poorly recognized liaison. Brain Res Brain Res Rev 45(3):164–178

    Article  PubMed  CAS  Google Scholar 

  • Selenius M, Rundlof AK, Olm E, Fernandes AP, Bjornstedt M (2010) Selenium and the selenoprotein thioredoxin reductase in the prevention, treatment and diagnostics of cancer. Antioxid Redox Signal 12(7):867–880

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Ha PC, Butler JA, Ou BR, Yeh JY, Whanger PD (1998) Effect of dietary selenium on selenoprotein W and glutathione peroxidase in 28 tissues of rat. J Nutr Biochem 9:23–27

    Article  CAS  Google Scholar 

  • Sun Y, Forsberg N, Whanger PD (1999) Selenoprotein W, selenium and glutathione peroxidase in rat and sheep brains and in brain cell cultures. Nutr Neurosci 2:227–237

    Google Scholar 

  • Sun Y, Gu QP, Whanger PD (2001a) Selenoprotein W in overexpressed and underexpressed rat glial cells in culture. J Inorg Biochem 84(1–2):151–156

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Butler JA, Whanger PD (2001b) Glutathione peroxidase activity and selenoprotein W levels in different brain regions of selenium-depleted rats. J Nutr Biochem 12(2):88–94

    Article  PubMed  CAS  Google Scholar 

  • Vendeland SC, Beilstein MA, Chen CL, Jensen ON, Barofsky E, Whanger PD (1993) Purification and properties of selenoprotein W from rat muscle. J Biol Chem 268(23):17103–17107

    PubMed  CAS  Google Scholar 

  • Whanger PD (2000) Selenoprotein W: a review. Cell Mol Life Sci 57(13–14):1846–1852

    Article  PubMed  CAS  Google Scholar 

  • Whanger PD (2001) Selenium and the brain: a review. Nutr Neurosci 4(2):81–97

    PubMed  CAS  Google Scholar 

  • Whanger PD (2009) Selenoprotein expression and function—selenoprotein W. Biochim Biophys Acta 1790(11):1448–1452

    Article  PubMed  CAS  Google Scholar 

  • Xiao R, Qiao JT, Zhao HF, Liang J, Yu HL, Liu J et al (2006) Sodium selenite induces apoptosis in cultured cortical neurons with special concomitant changes in expression of the apoptosis-related genes. Neurotoxicology 27(4):478–484

    Article  PubMed  Google Scholar 

  • Yeh JY, Beilstein MA, Andrews JS, Whanger PD (1995) Tissue distribution and influence of selenium status on levels of selenoprotein W. FASEB J 9(5):392–396

    PubMed  CAS  Google Scholar 

  • Yeh JY, Vendeland SC, Gu Q, Butler JA, Ou BR, Whanger PD (1997) Dietary selenium increases selenoprotein W levels in rat tissues. J Nutr 127(11):2165–2172

    PubMed  CAS  Google Scholar 

  • Zeng H, Combs GF Jr (2008) Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J Nutr Biochem 19(1):1–7

    Article  PubMed  Google Scholar 

  • Zhang Y, Zhou Y, Schweizer U, Savaskan NE, Hua D, Kipnis J et al (2008) Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J Biol Chem 283(4):2427–2438

    Article  PubMed  CAS  Google Scholar 

  • Zhou JC, Zhao H, Li JG, Xia XJ, Wang KN, Zhang YJ et al (2009) Selenoprotein gene expression in thyroid and pituitary of young pigs is not affected by dietary selenium deficiency or excess. J Nutr 139(6):1061–1066

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 30871902) and the Science Foundation of the Education Department of Heilongjiang Province (Grant No. 11551030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-Wen Xu or Zhao-Xin Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Effects of Se and incubation period on the expression of GADPH mRNA in chicken embryo neurons. GADPH mRNA expression level in neurons was measured by quantitative real-time RT-PCR. Bars represent mean ± standard deviation of triplicate cultures. (PPT 165 kb)

Fig. S2

Effects of Se on the half-life of SelW mRNA in chicken embryo neurons. The chicken embryo neuron monolayers were treated with 0 mol/l, ActD, ActD + 10−8 mol/l Se, ActD + 10−7 mol/l Se, ActD + 10−6 mol/l Se or ActD + 10−5 mol/l Se for 0 h, 3 h, 6 h, 9 h, 12 h, 24 h or 48 h, respectively. SelW mRNA expression level in chicken embryo neurons was measured by quantitative real-time RT-PCR. The RNA half-life was extrapolated from the SelW mRNA decay curve as the time point after 5μg/mL ActD treatment. (PPT 367 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JL., Li, HX., Li, S. et al. Effects of Selenoprotein W gene expression by selenium involves regulation of mRNA stability in chicken embryos neurons. Biometals 25, 459–468 (2012). https://doi.org/10.1007/s10534-012-9517-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9517-y

Keywords

Navigation