Skip to main content
Log in

Holo and apo-transferrins interfere with adherence to abiotic surfaces and with adhesion/invasion to HeLa cells in Staphylococcus spp.

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Staphylococcus aureus and Staphylococcus epidermidis are the major cause of infections associated with implanted medical devices. Colonization on abiotic and biotic surfaces is often sustained by biofilm forming strains. Human natural defenses can interfere with this virulence factor. We investigated the effect of human apo-transferrin (apo-Tf, the iron-free form of transferrin, Tf) and holo-transferrin (holo-Tf, the iron-saturated form) on biofilm formation by CA-MRSA S. aureus USA300 type (ST8-IV) and S. epidermidis (a clinical isolate and ATCC 35984 strain). Furthermore S. aureus adhesion and invasion assays were performed in a eukaryotic cell line. A strong reduction in biofilm formation with both Tfs was obtained albeit at very different concentrations. In particular, the reduction in biofilm formation was higher with apo-Tf rather than obtained with holo-Tf. Furthermore, while S. aureus adhesion to eukaryotic cells was not appreciably affected, their invasion was highly inhibited in the presence of holo-Tf, and partially inhibited by the apo form. Our results suggest that Tfs could be used as antibacterial adjuvant therapy in infection sustained by staphylococci to strongly reduce their virulence related to adhesion and cellular invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adlerova L, Bartoskova A, Faldyna M (2008) Lactoferrin: a review. Vet Med 53:457–468

    CAS  Google Scholar 

  • Alford CE, King TE Jr, Campbell PA (1991) Role of transferrin, transferrin receptors, and iron in macrophage listericidal activity. J Exp Med 174:459–466

    Article  PubMed  CAS  Google Scholar 

  • Andrés MT, Fierro JF (2010) Antimicrobial mechanism of action of transferrins: selective inhibition of H+-ATPase. Antimicrob Agents Chemother 54:4335–4342

    Article  PubMed  Google Scholar 

  • Ardehali R, Shi L, Janatova J, Mohammad SF, Burns GL (2002) The effect of apo-transferrin on bacterial adhesion to biomaterials. Artif Organs 26:512–520

    Article  PubMed  CAS  Google Scholar 

  • Ardehali R, Shi L, Janatova J, Mohammad SF, Burns GL (2003) The inhibitory activity of serum to prevent bacterial adhesion is mainly due to apo-transferrin. J Biomed Mat Res 66:21–28

    Google Scholar 

  • Beasley FC, Marolda CL, Cheung J, Buac S, Heinrichs DE (2011) Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by Staphyloferrin A, Staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect Immun 79:2345–2355

    Article  PubMed  CAS  Google Scholar 

  • Benson DE, Burns GL, Mohammad SF (1996) Effects of plasma on adhesion of biofilm forming Pseudomonas aeruginosa and Staphylococcus epidermidis to fibrin substrate. Am Soc Artif Intern Organs J 42:M655–M660

    Article  CAS  Google Scholar 

  • Benton BM, Zhang JP, Bond S et al (2004) Large-scale identification of genes required for full virulence of Staphylococcus aureus. J Bacteriol 186:8478–8489

    Article  PubMed  CAS  Google Scholar 

  • Bullen JJ, Griffiths E (eds) (1999) Iron-binding proteins and host-defence. In Iron and infection: molecular, physiological and clinical aspects, 2nd edn. Wiley, New York, pp 327–368

  • Bullen JJ, Rogers H, Spalding PB, Ward CG (2005) Iron infection: the heart of the matter. FEMS Immunol Med Microbiol 43:325–330

    Article  PubMed  CAS  Google Scholar 

  • Cafiso V, Bertuccio T, Santagati M, Demelio V, Spina D, Nicoletti G, Stefani S (2007) agr-Genotyping and transcriptional analysis of biofilm-producing Staphylococcus aureus. FEMS Immunol Med Microbiol 51:220–227

    Article  PubMed  CAS  Google Scholar 

  • Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006

    PubMed  CAS  Google Scholar 

  • Clarke SR, Foster SJ (2008) IsdA protects Staphylococcus aureus against the bactericidal protease activity of apolactoferrin. Infect Immun 76:1518–1526

    Article  PubMed  CAS  Google Scholar 

  • Conly JM, Johnston BL (2002) VISA, hetero-VISA and VRSA: the end of the vancomycin era? Can J Infect Dis 13:282–284

    PubMed  Google Scholar 

  • Daniłowicz E, Martinez-Arias R, Dolf G, Singh M, Probst I, Tümmler B, Höltig D, Waldmann KH, Gerlach GF, Stanke F, Leeb T (2010) Characterization of the porcine transferrin gene (TF) and its association with disease severity following an experimental Actinobacillus pleuropneumoniae infection. Anim Genet 41:424–427

    PubMed  Google Scholar 

  • Das A, Sahoo PK, Mohanty BR, Jena JK (2011) Pathophysiology of experimental Aeromonas hydrophila infection in Puntius sarana: Early changes in blood and aspects of the innate immune-related gene expression in survivors. Vet Immunol Immunopath 142:207–218

    Article  CAS  Google Scholar 

  • Ellison RT III, Giehl TJ, LaForce FM (1988) Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin, transferrin. Infect Immun 56:2774–2781

    PubMed  CAS  Google Scholar 

  • Ellison RT III, LaForce FM, Giehl TJ, Boose DS, Dunn BE (1990) Lactoferrin and transferrin damage of the gram-negative outer membrane is modulated by Ca2+ and Mg2+. J Gen Microbiol 136:1437–1446

    PubMed  CAS  Google Scholar 

  • Foster TJ, Höök M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6:484–488

    Article  PubMed  CAS  Google Scholar 

  • Francois P, Vaudaux P, Lew PD (1998) Role of plasma and extracellular matrix proteins in the physiopathology of foreign body infections. Ann Vasc Surg 12:34–40

    Article  PubMed  CAS  Google Scholar 

  • Götz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378

    Article  PubMed  Google Scholar 

  • Griffiths E, Williams P (1999) The Iron-uptake systems of pathogenic Bacteria, Fungi and Protozoa. In: Bullen JJ, Griffiths E (eds) Iron and infection: molecular, physiological and clinical aspects, 2nd edn. Wiley, New York, pp 87–212

    Google Scholar 

  • Heilmann C (2011) Adhesion mechanisms of staphylococci. Adv Exp Med Biol 715:105–123

    Article  PubMed  Google Scholar 

  • Heine RP, Elkins C, Wyrick PB, Sparling PE (1996) Transferrin increases adherence of iron-deprived Neisseria gonorrhoeae to human endometrial cells. Am J Obstet Gynecol 174:659–666

    Article  PubMed  CAS  Google Scholar 

  • Hirschhausen N, Schlesier T, Schmidt MA, Götz F, Peters G, Heilmann C (2010) A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. Cell Microbiol 12:1746–1764

    Article  PubMed  CAS  Google Scholar 

  • Lindsay JA, Holden MT (2004) Staphylococcus aureus: superbug and super genome? Trends Microbiol 12:378–385

    Article  PubMed  CAS  Google Scholar 

  • Modun B, Kendall D, Williams P (1994) Staphylococci express a receptor for human transferrin: identification of a 42-kilodalton cell wall transferrin-binding protein. Infect Immun 62:3850–3858

    PubMed  CAS  Google Scholar 

  • Modun B, Evans RW, Joannou CL, Williams P (1998) Receptor-mediated recognition and uptake of iron from human transferrin by Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun 66:3591–3596

    PubMed  CAS  Google Scholar 

  • Modun B, Morrissey J, Williams P (2000) The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol 8:231–237

    Article  PubMed  CAS  Google Scholar 

  • Oftung F, Lovik M, Andersen SR, Froholm LO, Bjune G (1999) A mouse model utilising human transferrin to study protection against Neisseria meningitidis serogroup B induced by outer membrane vesicle vaccination. FEMS Immunol Med Microbiol 26:75–82

    Article  PubMed  CAS  Google Scholar 

  • O’Gara JP (2007) ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270:179–188

    Article  PubMed  Google Scholar 

  • Peatman E, Baoprasertkul P, Terhune J, Xu P, Nandi S, Kucuktas H, Li P, Wang S, Somridhivej B, Dunham R, Liu Z (2007) Expression analysis of the acute phase response in channel catfish (Ictalurus punctatus) after infection with a Gram-negative bacterium. Dev Comp Immunol 31:1183–1196

    Article  PubMed  CAS  Google Scholar 

  • Raida MK, Buchmann K (2009) Innate immune response in rainbow trout (Oncorhynchus mykiss) against primary and secondary infections with Yersinia ruckeri O1. Dev Comp Immunol 33:35–45

    Article  PubMed  CAS  Google Scholar 

  • Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C, Wurster S, Scherpe S, Davies AP, Harris LG, Horstkotte MA, Knobloch JK, Ragunath C, Kaplan JB, Mack D (2007) Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 28:1711–1720

    Article  PubMed  CAS  Google Scholar 

  • Rooijakkers SHM, Rasmussen SL, McGillivray SM, Bartnikas TB, Mason AB, Friedlander AM, Nizet V (2010) Human transferrin confers serum resistance against Bacillus anthracis. J Biol Chem 285:7609–27613

    Article  Google Scholar 

  • Sahoo PK, Mahapatra KD, Saha JN, Barat A, Sahoo M, Mohanty BR et al (2008) Family association between immune parameters and resistance to Aeromonas hydrophila infection in the Indian major carp, Labeo rohita. Immunology 25:163–169

    CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Taylor JM, Heinrichs DE (2002) Transferrin binding in Staphylococcus aureus: involvement of a cell anchored protein. Mol Microbiol 43:1603–1614

    Article  PubMed  CAS  Google Scholar 

  • Valence F, Lortal S (1995) Zymogram and preliminary characterization of Lactobacillus helveticus autolysins. Appl Environ Microbiol 61:3391–3399

    PubMed  CAS  Google Scholar 

  • Vardhan H, Dutta R, Vats V, Gupta R, Jha R, Jha HC, Srivastava P, Bhengraj AR, Singh Mittal A (2009) Persistently elevated level of IL-8 in Chlamydia trachomatis infected HeLa 229 cells is dependent on intracellular available iron. Med Inflamm 2009:417658

    Article  Google Scholar 

  • Vergara-Irigaray M, Valle J, Merino N, Latasa C, García B, Ruiz de Los Mozos I, Solano C, Toledo-Arana A, Penadés JR, Lasa I (2009) Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Infect Immun 77:3978–3991

    Article  PubMed  CAS  Google Scholar 

  • von Bonsdorff L, Sahlstedt L, Ebeling F, Ruutu T, Parkkinen J (2003) Erratum to “Apotransferrin administration prevents growth of Staphylococcus epidermidis in serum of stem cell transplant patients by binding of free iron”. FEMS Immunol Med Microbiol 37:45–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Selan.

Additional information

M. Artini and G. L. Scoarughi equally contributed to this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artini, M., Scoarughi, G.L., Cellini, A. et al. Holo and apo-transferrins interfere with adherence to abiotic surfaces and with adhesion/invasion to HeLa cells in Staphylococcus spp.. Biometals 25, 413–421 (2012). https://doi.org/10.1007/s10534-011-9514-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9514-6

Keywords

Navigation