Skip to main content

Advertisement

Log in

Cooperative folding of tau peptide by coordination of group IIB metal cations during heparin-induced aggregation

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The group IIB elements, especially Cd(II) and Hg(II), are increasingly considered as potential environmental neurotoxins. This study demonstrates that the Alzheimer’s tau fragment R2, corresponding to the second repeat of the microtubule-binding domain, can bind to Zn(II), Cd(II) and Hg(II). Isothermal titration calorimetry experiments suggest that the most likely coordination site is the thiol group of Cys291, and this is further confirmed by a control experiment using a C291A mutant peptide. Circular dichroism spectrum reveals that the coordination of group IIB cations, especially Hg(II), can induce pronounced conformational conversions in natively unfolded R2, from random coil to other ordered structures. ThS fluorescence assays and electron microscopy indicate that the group IIB cations promote heparin-induced aggregation of R2, giving relatively small R2 filaments. The efficiency in promoting aggregation, as well as inducing conformational conversion, varies strongly with the cation’s polarizability. Based on these results, a model is proposed in which the cooperative folding of R2 through cross-bridging of group IIB cations is suggested to be a key factor in promoting aggregation, in addition to the effective neutralization of coulombic charge–charge repulsion by heparin, the poly-anion inducer. Our results provide clues to understanding the potential pathogenic role of group IIB metals in the development of neurofibrillary tangles, a typical hallmark of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734–736

    Article  PubMed  CAS  Google Scholar 

  • Barghorn S, Mandelkow E (2002) Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry 41:14885–14896

    Article  PubMed  CAS  Google Scholar 

  • Bergen M, Barghorn S, Jeganathan S, Mandelkow EM, Mandelkow E (2006) Spectroscopic approaches to the conformation of tau protein in solution and in paired helical filaments. Neurodegenerative Dis 3:197–206

    Article  Google Scholar 

  • Bhattacharya K, Rank KB, Evans DB, Sharma SK (2001) Role of cysteine-291 and cysteine-322 in the polymerization of human tau into Alzheimer-like filaments. Biochem Biophy Res Co 285:20–26

    Article  CAS  Google Scholar 

  • Bocca B, Forte G, Petrucci F, Pino A, Marchione F, Bomboi G, Senofonte O, Giubilei F, Alimonti A (2005) Monitoring of chemical elements and oxidative damage in patients affected by Alzheimer’s disease. Ann Ist Super Sanita 41:197–203

    PubMed  CAS  Google Scholar 

  • Carmel G, Mager EM, Binder LI, Kuret J (1996) The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J Biol Chem 271:32789–32795

    Article  PubMed  CAS  Google Scholar 

  • Friedhoff P, Schneider A, Mandelkow EM, Mandelkow E (1998) Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution. Biochemistry 37:10223–10230

    Article  PubMed  CAS  Google Scholar 

  • Ghoshal N, García-Sierra F, Fu Y, Beckett LA, Mufson EJ, Kuret J, Berry RW, Binder LI (2001) Tau-66: evidence for a novel tau conformation in Alzheimer’s disease. J Neurochem 77:1372–1385

    Article  PubMed  CAS  Google Scholar 

  • Greenfield NJ (1996) Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal Biochem 235:1–10

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Atwood CS, Moir RD, Hartshorn MA, Vonsattel JP, Tanzi RE, Bush AI (1997) Zinc-induced Alzheimer’s Abeta1–40 aggregation is mediated by conformational factors. J Biol Chem 272:26464–26470

    Article  PubMed  CAS  Google Scholar 

  • Jeganathan S, von Bergen M, Mandelkow EM, Mandelkow E (2008) The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Biochemistry 47:10526–10539

    Article  PubMed  CAS  Google Scholar 

  • Jiang LF, Yao TM, Zhu ZL, Wang C, Ji LN (2007) Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim Biophys Acta 1774:1414–1421

    PubMed  CAS  Google Scholar 

  • Johnson S (2001) Gradual micronutrient accumulation and depletion in Alzheimer’s disease. Med Hypotheses 56:595–597

    Article  PubMed  CAS  Google Scholar 

  • Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophy Acta 1751:119–139

    CAS  Google Scholar 

  • Liu GJ, Huang WD, Moir RD, Vanderburg CR, Lai B, Peng ZC, Tanzi RE, Rogers JT, Huang XD (2006) Metal exposure and Alzheimer’s pathogenesis. J Struct Biol 155:45–51

    Article  PubMed  CAS  Google Scholar 

  • Massaro EJ (2002) Handbook of neurotoxicology. Humana Press Inc, Totowa

    Book  Google Scholar 

  • Minoura K, Yao TM, Tomoo K, Sumida M, Sasaki M, Taniguchi T, Ishida T (2004) Different associational and conformational behaviors between the second and third repeat fragments in the tau microtubule-binding domain. Eur J Biochem 271:545–552

    Article  PubMed  CAS  Google Scholar 

  • Mo ZY, Zhu YZ, Zhu HL, Fan JB, Chen J, Liang Y (2009) Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322. J Biol Chem 284:34648–34657

    Article  PubMed  CAS  Google Scholar 

  • Mutter J, Naumann J, Sadaghiani C, Schneider R, Walach H (2004) Alzheimer disease: mercury as pathogenetic factor and apolipoprotein E as a moderator. Neuro Endocrinol Lett 25:331–339

    PubMed  CAS  Google Scholar 

  • Mutter J, Naumann J, Schneider R, Walach H (2007) Mercury and Alzheimer’s disease. Fortschr Neurol Psychiatr 75:528–538

    Article  PubMed  CAS  Google Scholar 

  • Nelson DL, Cox MM (2004) Lehninger principles of biochemistry. W.H. Freeman, New York

    Google Scholar 

  • Ngu-Schwemlein M, Merle JK, Healy P, Schwemlein S, Rhodes S (2009) Thermodynamics of the complexation of Hg(II) by cysteinyl peptide ligands using isothermal titration calorimetry. Thermochimica Acta 496:129–135

    Article  CAS  Google Scholar 

  • Sayre LM, Perry G, Harris PLR, Liu Y, Schubert KA, Smith MA (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 74:270–279

    Article  PubMed  CAS  Google Scholar 

  • Soragni A, Zambelli B, Mukrasch MD, Biernat J, Jeganathan S, Griesinger C, Ciurli S, Mandelkow E, Zweckstetter M (2008) Structural characterization of binding of Cu(II) to tau protein. Biochemistry 47:10841–10851

    Article  PubMed  CAS  Google Scholar 

  • Su XY, Wu WH, Huang ZP, Hu J, Lei P, Yu CH, Zhao YF, Li YM (2007) Hydrogen peroxide can be generated by tau in the presence of Cu(II). Biochem Biophy Res Co 358:661–665

    Article  CAS  Google Scholar 

  • Thompson CM, Markesbery WR, Ehmann WD, Mao YX, Vance DE (1988) Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 9:1–7

    PubMed  CAS  Google Scholar 

  • Tomoo K, Yao TM, Minoura K, Hiraoka S, Sumida M, Taniguchi T, Ishida T (2005) Possible role of each repeat structure of the microtubule-binding domain of the tau protein in in vitro aggregation. J Biochem 138:413–423

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296

    Article  PubMed  CAS  Google Scholar 

  • Wille H, Drewes G, Biernat J, Mandelkow EM, Mandelkow E (1992) Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J Cell Biol 118:573–584

    Article  PubMed  CAS  Google Scholar 

  • Wu JF, Basha MR, Zawia NH (2008) The environment, epigenetics and amyloidogenesis. J Mol Neurosci 34:1–7

    Article  PubMed  Google Scholar 

  • Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T (2002) Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem 82:1137–1147

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 20871094, 20901060, 20472065). We thank the support of the opening foundation of the MOE key laboratory of Bioinorganic and Synthetic Chemistry, Sun Yet-Sen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuo Shi or Tian-Ming Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, DJ., Shi, S., Yao, TM. et al. Cooperative folding of tau peptide by coordination of group IIB metal cations during heparin-induced aggregation. Biometals 25, 361–372 (2012). https://doi.org/10.1007/s10534-011-9505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9505-7

Keywords

Navigation