Skip to main content

Advertisement

Log in

Coordination of lapachol to bismuth(III) improves its anti-inflammatory and anti-angiogenic activities

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Complex [Bi(Lp)2]Cl was obtained with 4-hydroxy-3-(3-methylbut-2-enyl)naphthalene-1,2-dione, “lapachol” (HLp). Lapachol, [Bi(Lp)2]Cl and BiCl3 were evaluated in a murine model of inflammatory angiogenesis induced by subcutaneous implantation of polyether polyurethane sponge discs. Intraperitoneal (i.p.) administration of lapachol or [Bi(Lp)2]Cl reduced the hemoglobin content in the implants suggesting that reduction of neo-vascularization was caused by lapachol. In the per os treatment only [Bi(Lp)2]Cl decreased the hemoglobin content in the implants. Likewise, N-acetylglucosaminidase (NAG) activity decreased in the implants of the groups i.p. treated with lapachol and [Bi(Lp)2]Cl while in the per os treatment inhibition was observed only for [Bi(Lp)2]Cl. Histological analysis showed that the components of the fibro-vascular tissue (vascularization and inflammatory cell population) were decreased in lapachol- and complex-treated groups. Our results suggest that both lapachol and [Bi(Lp)2]Cl exhibit anti-angiogenic and anti-inflammatory activities which have been attributed to the presence of the lapachol ligand. However, coordination to bismuth(III) could be an interesting strategy for improvement of lapachol’s therapeutic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araújo FA, Rocha MA, Mendes JB, Andrade SP (2010) Atorvastatin inhibits inflammatory angiogenesis in mice through down regulation of VEGF, TNF-α and TGF-β1. Biomed Pharmacother 64:29–34

    Article  PubMed  Google Scholar 

  • Bezerra DP, Alves AP, De Alencar NM, Mesquita RO, Lima MW, Pessoa C, De Moraes MO, Lopes JN, Lopes NP, Costa-Lotufo LV (2008) Antitumor activity of two derivatives from 2-acylamine-1, 4-naphthoquinone in mice bearing S180 tumor. J Exp Ther Oncol. 7:113–121

    PubMed  CAS  Google Scholar 

  • Briand GG, Burford N (1999) Bismuth compounds and preparations with biological or medicinal relevance. Chem Rev 99:2601–2657

    Article  PubMed  CAS  Google Scholar 

  • Caruso F, Martínez MA, Rossi M, Goldberg A, Villalba EC, Aymonino PJ (2009) Crystal and molecular structure of manganese(II) lapacholate, a novel polymeric species undergoing temperature-reversible metal to ligand electron transfer. Inorg Chem 48:3529–3534

    Article  PubMed  CAS  Google Scholar 

  • Da Silva Júnior EN, Cavalcanti BC, Guimarães TT, Pinto MCFR, Cabral IO, Pessoa C, Costa-Lotufo LV, De Moraes MO, De Andrade CKZ, Dos Santos MR, De Simone CA, Goulart MOF, Pinto AV (2011) Synthesis and evaluation of quinonoid compounds against tumor cell lines. Eur J Med Chem 46:399–410

    Article  Google Scholar 

  • De Almeida ER, Da Silva Filho AA, Dos Santos ER, Lopes CAC (1990) Antiinflammatory action of lapachol. J Ethnopharmacol 29: 239–241 (AAPS PharmSciTech 9: 163–168)

    Google Scholar 

  • Eyong KO, Kumar PS, Kuete V, Folefoc GN, Nkengfack EA, Baskaran S (2008) Semisynthesis and antitumoral activity of 2-acetylfuranonaphthoquinone and other naphthoquinone derivatives from lapachol. Bioorg Med Chem Lett 18:5387–5390

    Article  PubMed  CAS  Google Scholar 

  • Ferreira VF (1996) Aprendendo sobre os conceitos de ácido e base. Química Nova na Escola 4:35–36

    Google Scholar 

  • Ferreira MA, Barcelos LS, Campos PP, Vasconcelos AC, Teixeira MM, Andrades SP (2004) Sponge-induced angiogenesis and inflammation in PAF receptor-deficient mice (PAFR-KO). Br J Pharmacol 141:1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Gong Y, Koh D-R (2010) Neutrophils promote inflammatory angiogenesis via release of preformed VEGF in an in vivo corneal model. Cell Tissue Res 339:437–448

    Article  PubMed  Google Scholar 

  • Hall DWR (1989) Review of the modes of action of colloidal bismuth subcitrate. Scand J Gastroenterol 24:3–6

    Article  Google Scholar 

  • Lee SP (1991) The mode of action of colloidal bismuth subcitrate. Scand J Gastroenterol 26:1–6

    Article  Google Scholar 

  • Lin C-Y, Shen Y-H, Wu S-H, Lin C-H, Hwang S-M, Tsai Y-C (2004) Effect of bismuth subgallate on nitric oxide and prostaglandin E2 production by macrophages. Biochem Biophys Res Commun 315:830–835

    Article  PubMed  CAS  Google Scholar 

  • Maeda M, Murakami M, Takegami T, Ota T (2008) Promotion or suppression of experimental metastasis of B16 melanoma cells after oral administration of lapachol. Toxicol Appl Pharm 229:232–238

    Article  CAS  Google Scholar 

  • Martínez MA, De Jiménez MCL, Castellano EE, Piro OE, Aymonino PJ (2003) Synthesis, structure and properties of a zinc(II) complex with the lapacholate anion and ethanol as ligands. J Coord Chem 56:803–816

    Article  Google Scholar 

  • Mendes JB, Campos PP, Rocha MA, Andrade SP (2009a) Cilostazol and pentoxifylline decrease angiogenesis, inflammation, and fibrosis in sponge-induced intraperitoneal adhesion in mice. Life Sci 84:537–543

    Article  PubMed  CAS  Google Scholar 

  • Mendes JB, Rocha MA, Araújo FA, Moura SAL, Ferreira MAND, Andrade SP (2009b) Differential effects of rolipram on chronic subcutaneous inflammatory angiogenesis and on peritoneal adhesion in mice. Microvasc Res 78:265–271

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto K (1970) Infrared spectra of inorganic and coordination compounds, 2nd edn. Willey-Interscience, New York

    Google Scholar 

  • Oliveira RAS, Azevedo-Ximenes E, Luzzati R, Garcia RC (2010) The hydroxy-naphthoquinone lapachol arrests mycobacterial growth and immunomodulates host macrophages. Int Immunopharmacol 10:1463–1473

    Article  PubMed  CAS  Google Scholar 

  • Rocha LTS, Costa KA, Oliveira ACP, Nascimento EB, Bertollo CM, Araújo F, Teixeira LR, Andrade SP, Beraldo H, Coelho MM (2006) Antinociceptive, antiedematogenic and antiangiogenic effects of benzaldehyde semicarbazone. Life Sci 79:499–505

    Article  PubMed  CAS  Google Scholar 

  • Sadler PJ, Li H, Sun H (1999) Coordination chemistry of metals in medicine: Target sites for bismuth. Coord Chem Rev 185–186:689–709

    Article  Google Scholar 

  • Severi C, Abdullahi M, Tari R, Vannella L, Marcheggiano A, Capoccia D, Leonetti F, Osborn J, Annibale B (2009) High efficacy of bismuth subcitrate for Helicobacter pylori eradication in pangastritis. Digest Liver Dis. 41:555–558

    Article  CAS  Google Scholar 

  • Walsh DA, Pearson CI (2001) Angiogenesis in the pathogenesis of inflammatory joint and lung diseases. Arthritis Res 3:147–153

    Article  PubMed  CAS  Google Scholar 

  • Xavier DO, Amaral LS, Gomes MA, Rocha MA, Campos PR, Cota BDCV, Tafuri LSA, Paiva AMR, Silva JH, Andrade SP, Belo AV (2010) Metformin inhibits inflammatory angiogenesis in a murine sponge model. Biomed Pharmacother 64:220–225

    Article  PubMed  CAS  Google Scholar 

  • Yang N, Sun H (2007) Biocoordination chemistry of bismuth: Recent advances. Coord Chem Rev 251:2354–2366

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by CNPq and INCT-INOFAR (Proc. CNPq 573.364/2008-6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silvia P. Andrade or Heloisa Beraldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parrilha, G.L., Vieira, R.P., Campos, P.P. et al. Coordination of lapachol to bismuth(III) improves its anti-inflammatory and anti-angiogenic activities. Biometals 25, 55–62 (2012). https://doi.org/10.1007/s10534-011-9481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9481-y

Keywords

Navigation