Skip to main content

Advertisement

Log in

Spectroscopic studies of amphotericin B–Cu2+ complexes

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The aim of this research is to investigate amphotericin B (AmB)–Cu2+ complexes in aqueous solution at different pH values. Electronic absorption, circular dichroism (CD), Raman and FTIR spectroscopies were used in this study. We found that different concentrations of AmB and Cu2+ ions in solution leads to formation of complexes with stoichiometry of 2:1 and 1:1. The formation of AmB–Cu2+ complexes at physiological pH values is accompanied by changes of the molecular organization of AmB especially disaggregation. These observed effects might be significant from a medical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baginski M, Resat H, Borowski E (2002) Comparative molecular dynamics simulations of amphotericin B-cholesterol/ergosterol membrane channels. Biochim Biophys Acta 1567(1–2):63–78

    PubMed  CAS  Google Scholar 

  • Balakrishnan AR, Easwaran KR (1993) CD and NMR studies on the aggregation of amphotericin-B in solution. Biochim Biophys Acta 1148(2):269–277

    Article  PubMed  CAS  Google Scholar 

  • Baran M, Mazerski J (2002) Molecular modelling of amphotericin B-ergosterol primary complex in water. Biophys Chem 95(2):125–133

    Article  PubMed  CAS  Google Scholar 

  • Barwicz J, Christian S, Gruda I (1992) Effects of the aggregation state of amphotericin B on its toxicity to mice. Antimicrob Agents Chemother 36(10):2310–2315

    PubMed  CAS  Google Scholar 

  • Barwicz J, Beauregard M, Tancrede P (2002) Circular dichroism study of interactions of fungizone or AmBisome Forms of amphotericin B with human low density lipoproteins. Biopolymers (Biospectroscopy) 67:49–55

    Article  CAS  Google Scholar 

  • Beezer AE, O’Brien P, Sham WL (1985a) Stability constants for, and structural investigation of, divalent metal ion complexes with polyene antibiotics. Inorg Chim Acta 108:123–127

    Article  CAS  Google Scholar 

  • Beezer AE, O’Brien P, Sham WL (1985b) The synthesis and characterization of polyene complexes with the divalent metal ions: Mg(II), Ca(II), Ni(II), Cu(II) and Zn(II). Inorg Chim Acta 108:117–122

    Article  CAS  Google Scholar 

  • Brajtburg J, Bolard J (1996) Carrier effects on biological activity of amphotericin B. Clin Microbiol Rev 9(4):512

    PubMed  CAS  Google Scholar 

  • Brajtburg J, Medoff G, Kobayashi GS, Elberg S (1980) Influence of extracellular K+ or Mg2+ on the stages of the antifungal effects of amphotericin B and filipin. Antimicrob Agents Chemother 18(4):593–597

    PubMed  CAS  Google Scholar 

  • Bunow MR, Levin IW (1977) Vibrational Raman spectra of lipid systems containing amphotericin B. Biochim Biophys Acta 464(1):202–216

    Article  PubMed  CAS  Google Scholar 

  • Cheron M, Bolard J, Brajtburg J (1984) Inhibition by Cu2+ of amphotericin B induced lysis of erythrocytes. FEBS Lett 178(1):127–131

    Article  PubMed  CAS  Google Scholar 

  • Colline A, Bolard J, Chinsky L, Fang JR, Rinehart KL Jr (1985) Raman spectra of nystatin. Influence of impurities. J Antibiot (Tokyo) 38(2):181–185

    CAS  Google Scholar 

  • De Kruijff B, Gerritsen WJ, Oerlemans A, Demel RA, van Deenen LL (1974) Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. I. Specificity of the membrane permeability changes induced by the polyene antibiotics. Biochim Biophys Acta 339(1):30–43

    Article  PubMed  Google Scholar 

  • Ernst C, Grange J, Rinnert H, Dupont G, Lematre J (1981) Structure of amphotericin B aggregates as revealed by UV and CD spectroscopies. Biopolymers 20:1575–1588

    Article  CAS  Google Scholar 

  • Espada R, Valdespina S, Alfonso C, Rivas G, Ballesteros MP, Torrado JJ (2008) Effect of aggregation state on the toxicity of different amphotericin B preparations. Int J Pharm 361(1–2):64–69

    Article  PubMed  CAS  Google Scholar 

  • Ferdani R, Gokel GW (2004) Ionophores. In: Steed JW, Atwood JA (eds) Encyclopedia of supramolecular chemistry. Marcel Dekker, New York

  • Gaboriau F, Cheron M, Leroy L, Bolard J (1997) Physico-chemical properties of the heat-induced ‘superaggregates’ of amphotericin B. Biophys Chem 66:1–12

    Article  PubMed  CAS  Google Scholar 

  • Gabrielska J, Gagoś M, Gubernator J, Gruszecki WI (2006) Binding of antibiotic amphotericin B to lipid membranes: a 1H NMR study. FEBS Lett 580(11):2677–2685

    Article  PubMed  CAS  Google Scholar 

  • Gagoś M, Arczewska M (2010) Spectroscopic studies of molecular organization of antibiotic amphotericin B in monolayers and dipalmitoylphosphatidylcholine lipid multibilayers. Biochim Biophys Acta 1798:2124–2130

    Article  PubMed  Google Scholar 

  • Gagoś M, Gruszecki WI (2008) Organization of polyene antibiotic amphotericin B at the argon-water interface. Biophys Chem 137(2–3):110–115

    PubMed  Google Scholar 

  • Gagoś M, Koper R, Gruszecki WI (2001) Spectrophotometric analysis of organisation of dipalmitoylphosphatylcholine bilayers containing the polyene antibiotic amphotericin B. Biochim Biophys Acta 1511:90–98

    Article  PubMed  Google Scholar 

  • Gagoś M, Gabrielska J, Dalla Serra M, Gruszecki WI (2005) Binding of antibiotic amphotericin B to lipid membranes: monomolecular layer technique and linear dichroism-FTIR studies. Mol Membr Biol 22(5):433–442

    Article  PubMed  Google Scholar 

  • Gagoś M, Herec M, Arczewska M, Czernel G, Dalla Serra M, Gruszecki WI (2008) Anomalously high aggregation level of the polyene antibiotic amphotericin B in acidic medium: implications for the biological action. Biophys Chem 136(1):44–49

    Article  PubMed  Google Scholar 

  • Gallis HA, Drew RH, Pickard WW (1990) Amphotericin B: 30 years of clinical experience. Rev Infect Dis 12(2):308–329

    Article  PubMed  CAS  Google Scholar 

  • Gruszecki WI, Herec M (2003) Dimers of polyene antibiotic amphotericin B. J Photochem Photobiol B 72(1–3):103–105

    Article  CAS  Google Scholar 

  • Gruszecki WI, Gagoś M, Herec M (2003) Dimers of polyene antibiotic amphotericin B detected by means of fluorescence spectroscopy: molecular organization in solution and in lipid membranes. J Photochem Photobiol B 69(1):49–57

    Article  PubMed  CAS  Google Scholar 

  • Hann IM, Prentice HG (2001) Lipid-based amphotericin B: a review of the last 10 years of use. Int J Antimicrob Ag 17:161–169

    Article  CAS  Google Scholar 

  • Harris D (1987) Quantitative methods of chemical analysis, 2nd edn. W. H. Freeman and Co. edn, New York

    Google Scholar 

  • Hartsel S, Bolard J (1996) Amphotericin B: new live for an old drug. TiPS 17

  • Iqbal Z, Weidekamm E (1979) Pre-resonance Raman spectra and conformations of nystatin in powder, solution and phospholipid-cholesterol multilayers. Biochim Biophys Acta 555(3):426–435

    Article  PubMed  CAS  Google Scholar 

  • Kasha M, Rawls HR, Ashraf El-Bayoumi M (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11:371–392

    Article  CAS  Google Scholar 

  • Konopka K, Guo LSS, Duzgunes N (1999) Anti-HIV activity of amphotericin B-cholesteryl sulfate colloidal dispersion in vitro. Antivir Res 42:197–209

    Article  PubMed  CAS  Google Scholar 

  • La Via WV, Lambert JL, Pelletier MJ, Morookian JM, Sirk SJ, Mickiene D, Walsh TJ, Borchert MS (2006) Measurement of amphotericin B concentration by resonant Raman spectroscopy—a novel technique that may be useful for non-invasive monitoring. Med Mycol 44(2):169–174

    Article  PubMed  CAS  Google Scholar 

  • Mazerski J, Bolard J, Borowski E (1983) Circular dichroism study of the interaction between aromatic heptaene antibiotics and small unilamellar vesicles. Biochem Biophys Res Commun 116(2):520–526

    Article  PubMed  CAS  Google Scholar 

  • Petit C, Yardley V, Gaboriau F, Bolard J, Croft SL (1999) Activity of a heat-induced reformulation of amphotericin B deoxycholate (fungizone) against Leishmania donovani. Antimicrob Agents Chemother 43(2):390–392

    PubMed  CAS  Google Scholar 

  • Halde C, Wright ET, Pollard WH, II, Newcomer VD, Sternberg TH (1956) The effect of amphotericin B upon the yeast flora of the gastrointestinal tract of man. Antibiot Annu 123–127

  • Ridente Y, Aubard J, Bolard J (1995) Surface-enhanced resonance Raman and circular dichroism spectra of amphotericin B and its methylester derivative in silver colloidal solutions. Biospectroscopy 2(1):1–8

    Article  Google Scholar 

  • Ridente Y, Aubard J, Bolard J (1999) Absence in amphotericin B-spiked human plasma of the free monomeric drug, as detected by SERS. FEBS Lett 446(2–3):283–286

    Article  PubMed  CAS  Google Scholar 

  • Shervani Z, Etori H, Taga K, Yoshida T, Okabayashi H (1996) Aggregation of polyene antibiotics as studied by electronic absorption and circular dichroism spectroscopies. Colloids Surf B Biointerfaces 7(1):31–38

    Article  CAS  Google Scholar 

  • Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S (2008) Amphotericin B formulations and drug targeting. J Pharm Sci 97(7):2405–2425

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financed by the Ministry of Education and Science of Poland from the budget funds for science in the years 2008–2011 within the research project N N401 015035. Authors thanks to MSc Viktoria Babenko from Department of Chemistry University of Warsaw Poland for assistance with CD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Gagoś.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagoś, M., Czernel, G., Kamiński, D.M. et al. Spectroscopic studies of amphotericin B–Cu2+ complexes. Biometals 24, 915–922 (2011). https://doi.org/10.1007/s10534-011-9445-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9445-2

Keywords

Navigation