Skip to main content
Log in

Structural characteristic, pH and thermal stabilities of apo and holo forms of caprine and bovine lactoferrins

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Apo and holo forms of lactoferrin (LF) from caprine and bovine species have been characterized and compared with regard to the structural stability determined by thermal denaturation temperature values (T m), at pH 2.0–8.0. The bovine lactoferrin (bLF) showed highest thermal stability with a T m of 90 ± 1°C at pH 7.0 whereas caprine lactoferrin (cLF) showed a lower T m value 68 ± 1°C. The holo form was much more stable than the apo form for the bLF as compared to cLF. When pH was gradually reduced to 3.0, the T m values of both holo bLF and holo cLF were reduced showing T m values of 49 ± 1 and 40 ± 1°C, respectively. Both apo and holo forms of cLF and bLF were found to be most stable at pH 7.0. A significant loss in the iron content of both holo and apo forms of the cLF and bLF was observed when pH was decreased from 7.0 to 2.0. At the same time a gradual unfolding of the apo and holo forms of both cLF and bLF was shown by maximum exposure of hydrophobic regions at pH 3.0. This was supported with a loss in α-helix structure together with an increase in the content of unordered (aperiodic) structure, while β structure seemed unchanged at all pH values. Since LF is used today as fortifier in many products, like infant formulas and exerts many biological functions in human, the structural changes, iron binding and release affected by pH and thermal denaturation temperature are important factors to be clarified for more than the bovine species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

LF:

Lactoferrin

apo LF:

Apo lactoferrin

holo LF:

Holo lactoferrin

cLF:

Caprine lactoferrin

bLF:

Bovine lactoferrin

Trp:

Tryptophan

CD:

Circular dichroism

far-UV CD:

Far-ultraviolet circular dichroism

T m :

Thermal denaturation temperature

References

  • Adlerova L, Bartoskova A, Faldyna H (2008) Lactoferrin: a review. Vet Med 53:457–468

    CAS  Google Scholar 

  • Baker HM, Baker EN (2004) Lactoferrin and Iron: structural and dynamic aspects of binding and release. Biometals 17:209–216

    Article  CAS  PubMed  Google Scholar 

  • Baker EN, Baker HM (2009) A structural framework for understanding the multifunctional character of lactoferrin. Biochimie 91(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Brock JH (1997) Lactoferrin structure function relationships: an overview. In: Hutchens TW, Lonnerdal B (eds) Lactoferrin interactions and biological functions. Human Press, Totowa, pp 3–25

    Google Scholar 

  • Conesa C, Sanchez L, Rota C, Perez M, Calvo M (2007) A calorimetric study of thermal denaturation of recombinant human lactoferrin from rice. J Agric Food Chem 55:4848–4853

    Article  CAS  PubMed  Google Scholar 

  • Conesa C, Sanchez L, Rota C, Perez M, Calvo M, Farnaud S, Evans RW (2008) Isolation of lactoferrin from milk of different species: calorimetric and antimicrobial studies. Comp Biochem Physiol B 150:131–139

    Article  PubMed  Google Scholar 

  • Devaraja KB, Kumara PR, Prakash V (2009) Characterization of acid-induced molten globule like state of ficin. Int J Biol Macromol 45(3):248–254

    Article  Google Scholar 

  • Eftink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199–227

    Article  CAS  PubMed  Google Scholar 

  • Eftink MR, Selvidge LA (1982) Fluorescence quenching of liver alcohol dehydrogenase by acrylamide. Biochemistry 21(1):117–125

    Article  CAS  PubMed  Google Scholar 

  • Ellison RT III, Giehl TJ, LaForce M (1988) Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect Immun 56:2774–2781

    CAS  PubMed  Google Scholar 

  • Farnaud S, Evans RW (2003) Lactoferrin—a multifunctional protein with antimicrobial properties. Mol Immunol 40:395–405

    Article  CAS  PubMed  Google Scholar 

  • Gorinstein S, Goshev I, Moncheva S, Zemser M, Weisz M, Caspi A, Libman I, Lerner HT, Trakhtenberg S, Martín-Belloso O (2000) Intrinsic tryptophan fluorescence of human serum proteins and related conformational changes. J Protein Chem 19(8):637–642

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Pan F, Sawano Y, Makino T, Kakehi Y, Komiyama M, Kawakami H, Tanokura M (2008) Studies of the structure of multiferric ion-bound lactoferrin: a new antianemic edible material. Int Dairy J 18:1051–1056

    Article  CAS  Google Scholar 

  • Jenness R (1980) Composition and characteristics of goat milk: review1968–1979. J Dairy Sci 63:1605–1630

    Article  CAS  Google Scholar 

  • Karthikeyan S, Sharma S, Sharma AK, Paramasivam M, Yadav S, Srinivasan A, Singh TP (1999) Structural variability and functional convergence in lactoferrins. Curr Sci 77(2):241–255

    CAS  Google Scholar 

  • Khan JA, Kumar P, Srinivasan A, Singh TP (2001) Protein intermediate trapped by the simultaneous crystallization process. Crystal structure of an iron-saturated intermediate in the Fe3+ binding pathway of camel lactoferrin at 2.7 Å resolution. J Biol Chem 276:36817–36823

    Article  CAS  PubMed  Google Scholar 

  • Koepf EK, Petrassi HM, Sudol M, Kelly JW (1999) WW: an isolated three-stranded antiparallel β-sheet domain that unfolds and refolds reversibly; evidence for a structured hydrophobic cluster in urea and GdnHCl and a disordered thermal unfolded state. Protein Sci 8:841–853

    Article  CAS  PubMed  Google Scholar 

  • Masco L, Huys TG, De Brandt E, Temmerman R, Swings J (2005) Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. Int J Food Microbiol 102:221–230

    Google Scholar 

  • Masson PL, Heremans JF (1971) Lactoferrin in milk from different species. Comp Biochem Physiol B 39:119–129

    Article  CAS  PubMed  Google Scholar 

  • Masson PL, Heremans JF, Prignot JJ, Wauters G (1966) Immunohistochemical localization and bacteriostatic properties of an iron-binding protein from bronchial mucus. Thorax 21:538–544

    Article  CAS  PubMed  Google Scholar 

  • Mata L, Sanchez L, Headon DR, Calvo M (1998) Thermal denaturation of human lactoferrin and its effect on the ability to bind iron. J Agric Food Chem 46:3964–3970

    Article  CAS  Google Scholar 

  • Matulis D, Baumann CG, Bloomfield VA, Lovrien RE (1999) 1-Anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers 49(6):451–458

    Article  CAS  PubMed  Google Scholar 

  • Nam MS, Shimazaki K, Kumura H, Lee KK, Yu DY (1999) Characterization of Korean native goat lactoferrin. Comp Biochem Physiol B 123:201–208

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1991) A brief history of iron metabolism. Biometals 4:1–6

    CAS  Google Scholar 

  • Olakanmi O, Rasmussen GT, Lewis TS, Stokes JB, Kemp JD, Britigan BE (2002) Multivalent metal-induced iron acquisition from transferrin and lactoferrin by myeloid cells. J Immunol 169:2076–2084

    CAS  PubMed  Google Scholar 

  • Orsi N (2004) The antimicrobial activity of lactoferrin: current status and perspectives. Biometals 17:189–196

    Article  CAS  PubMed  Google Scholar 

  • Pace CN, Scholtz JM (1997) Measuring the conformational stability of a protein. In: Creighton TE (ed) Protein structure: a practical approach, 2nd edn. IRL Press, Oxford, pp 299–321

    Google Scholar 

  • Recio I, Visser S (1999) Two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin: in situ enzymatic hydrolysis on an ion-exchange membrane. J Chromatogr A 831:191–201

    Article  CAS  PubMed  Google Scholar 

  • Recio I, Visser S (2000) Antibacterial and binding characteristics of bovine, ovine and caprine lactoferrins: a comparative study. Int Dairy J 10:597–605

    Article  CAS  Google Scholar 

  • Sanchez L, Aranda P, Perez MD, Calvo M (1988) Concentration of lactoferrin and transferrin throughout lactation in cow’s colostrums and milk. Biol Chem Hoppe-Seyler 369:1005–1008

    CAS  PubMed  Google Scholar 

  • Spik BC, Montreuil J (1988) Comparative study of the primary structures of sero-, lacto- and ovotransferrin glycans from different species. Biochimie 70:1459–1469

    Article  CAS  PubMed  Google Scholar 

  • Sreedhara A, Flengsrud R, Prakash V, Krowarsch D, Langsrud T, Kaul P, Devold TG, Vegarud GE (2010) A comparison of effects of pH on the thermal stability and conformation of caprine and bovine lactoferrin. Int Dairy J 20:487–494

    Article  CAS  Google Scholar 

  • Steijns JM, van Hooijdonk ACM (2000) Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. Br J Nutr 84:S11–S17

    Article  CAS  PubMed  Google Scholar 

  • Tina KG, Bhadra R, Srinivasan N (2007) PIC: protein interaction calculator. Nucleic Acids Res 35:W473–W476

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Wakabayashi H, Yamauchi K, Teraguchi S, Hayasawa H (2002) Bovine lactoferrin and lactoferricin derived from milk: production and applications. Biochem Cell Biol 80(1):109–112

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Wakabayashi H, Shin K, Yamauchi K, Yaeshima T, Iwatsuki K (2009) Twenty-five years of research on bovine lactoferrin applications. Biochimie 91:52–57

    Google Scholar 

  • Uchida T, Oda T, Sato K, Kawakami H (2006) Availability of lactoferrin as a natural solubilizer of iron for food products. Int Dairy J 16:95–101

    Article  CAS  Google Scholar 

  • Van Hooijdonk ACM, Kussendrager KD, Steijns JM (2000) In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence. Br J Nutr 84:127–134

    Google Scholar 

  • Wakabayashi H, Yamauchi K, Takase M (2006) Lactoferrin research, technology and applications. Int Dairy J 16:1241–1251

    Google Scholar 

  • Yang JT, Wu CS, Martinez HM (1986) Calculation of protein conformation from circular dichroism. In: Hirs CH, Timasheff SN (eds) Methods in enzymology, vol 130. Academic Press, New York, pp 208–269

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Daniel Krowarsch, Faculty of Biotechnology, University of Wroclaw, Poland for providing circular dichroism facility and technical assistance. Further, the author is thankful to Tor Bruun, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences for assistance during protein purification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashoka Sreedhara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreedhara, A., Flengsrud, R., Langsrud, T. et al. Structural characteristic, pH and thermal stabilities of apo and holo forms of caprine and bovine lactoferrins. Biometals 23, 1159–1170 (2010). https://doi.org/10.1007/s10534-010-9366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9366-5

Keywords

Navigation