Skip to main content

Advertisement

Log in

The effect of divalent cations on the catalytic activity of the human plasma 3′-exonuclease

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The 3′-exonuclease from human plasma is a soluble form of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) (EC 3.1.4.1/EC 3.6.1.9). Here, the possibility of divalent cation influence for the 3′-exonuclease activity was investigated using the phosphorothioate congener of oligonucleotide containing all phosphorothioate internucleotide linkages of the [RP]-configuration ([RP-PS]-d[T12]) as the substrate for this enzyme. It was found that the 3′-exonuclease is a metalloenzyme, i.e. its phosphodiesterase activity was completely abolished at 0.8 mM concentration EDTA and, in turn, it was restored in the presence of Mg2+ or Mn2+ ions. In addition, Mg2+ can be replaced effectively by Ca2+, Mn2+, or Co2+, but not by Ni2+ and Cd2+ during the hydrolysis of the phosphorothioate substrate in human plasma. In addition, the mechanism is postulated, by which a single internucleotide phosphorothioate bond of the SP-configuration at the 3′-end of unmodified phosphodiesters (PO-oligos), or their phosporothioate analogs (PS-oligos) protects these compounds against degradation in blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abaza MS, Al-Saffar A, Al-Sawan S, Al-Attiyah R (2008) c-myc antisense oligonucleotides sensitize human colorectal cancer cells to chemotherapeutic drugs. Tumour Biol 29:287–303. doi:10.1159/000156706

    Article  CAS  PubMed  Google Scholar 

  • Bartlett PA, Eckstein F (1982) Stereochemical course of polymerization catalyzed by avian myeloblastosis virus reverse transcriptase. J Biol Chem 257:8879–8884

    CAS  PubMed  Google Scholar 

  • Belli SI, Sali A, Goding JW (1994) Divalent cations stabilize the conformation of plasma cell membrane glycoprotein PC-1 (alkaline phosphodiesterase I). Biochem J 304:75–80

    CAS  PubMed  Google Scholar 

  • Bollen M, Gijsbers R, Ceulemans H, Stalmans W, Stefan C (2000) Nucleotide pyrophosphatases/phosphodiesterases on the move. Crit Rev Biochem Mol Biol 35:393–432. doi:10.1080/10409230091169249

    Article  CAS  PubMed  Google Scholar 

  • Bond MD, Holmquist B, Vallee BL (1986) Thioamide substrate probes of metal-substrate interactions in carboxypeptidase A catalysis. J Inorg Biochem 28:97–105

    Article  CAS  PubMed  Google Scholar 

  • Brautigam CA, Steitz TA (1998) Structural principles for the inhibition of the 3′–5′ exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. J Mol Biol 277:363–377. doi:10.1006/jmbi.1997.1586

    Article  CAS  PubMed  Google Scholar 

  • Connolly BA, Eckstein F, Pingoud A (1984) The stereochemical course of the restriction endonuclease EcoRI- catalyzed reaction. J Biol Chem 259:10760–10763

    CAS  PubMed  Google Scholar 

  • Cowan JA (1998) Metal activation of enzymes in nucleic acid biochemistry. Chem Rev 98:1067–1087

    Article  CAS  PubMed  Google Scholar 

  • Duan RD, Bergman T, Xu N, Wu J, Cheng Y, Duan J, Nelander S, Palmberg C, Nilsson A (2003) Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family. J Biol Chem 278:38528–38536. doi:10.1074/jbc.M305437200

    Article  CAS  PubMed  Google Scholar 

  • Eckstein F, Armstrong VW, Sternbach H (1976) Stereochemistry of polymerization by DNA-dependent RNA- polymerase from Escherichia coli: an investigation with a diastereomeric ATP-analogue. Proc Natl Acad Sci USA 73:2987–2990

    Article  CAS  PubMed  Google Scholar 

  • Eckstein F, Sternbach H, von der Haar F (1977) Stereochemistry of internucleotidic bond formation by tRNA nucleotidyltransferase from baker′s yeast. Biochemistry 16:3429–3432

    Article  CAS  PubMed  Google Scholar 

  • Eckstein F, Burgers PM, Hunneman DH (1979) Stereochemistry of hydrolysis by snake venom phosphodiesterase. J Biol Chem 254:7476–7478

    PubMed  Google Scholar 

  • Eder PS, DeVine RJ, Dagle JM, Walder JA (1991) Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′-exonuclease in plasma. Antisense Res Dev 1:141–151

    CAS  PubMed  Google Scholar 

  • Frey PA, Sammons RD (1985) Bond order and charge localization in nucleoside phosphorothioates. Science 228:541–545

    Article  CAS  PubMed  Google Scholar 

  • Gijsbers R, Ceulemans H, Stalmans W, Bollen M (2001) Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases. J Biol Chem 276:1361–1368. doi:10.1074/jbc.M007552200

    Article  CAS  PubMed  Google Scholar 

  • Gilar M, Belenky A, Budman Y, Smisek DL, Cohen AS (1998) Impact of 3′-exonuclease stereoselectivity on the kinetics of phosphorothioate oligonucleotide metabolism. Antisense Nucleic Acids Drug Dev 8:35–42

    CAS  Google Scholar 

  • Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ectonucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta 1638:1–19. doi:10.1016/S0925-4439(03)00058-9

    CAS  PubMed  Google Scholar 

  • Grasby JA, Connolly BA (1992) Stereochemical outcome of the hydrolysis reaction catalyzed by the EcoRV restriction endonuclease. Biochemistry 31:7855–7861

    Article  CAS  PubMed  Google Scholar 

  • Gupta AP, Benkovic SJ (1984) Stereochemical course of the 3′ → 5′ exonuclease activity of DNA polymerase. Biochemistry 23:5874–5881

    Article  CAS  PubMed  Google Scholar 

  • Hoke GD, Draper K, Freier SM, Gonzalez C, Driver VB, Zounes MC, Ecker DJ (1991) Effects of phosphorothioate capping on antisense oligonucleotide stability, hybridization and antiviral efficacy versus herpes simplex virus infection. Nucleic Acids Res 19:5743–5748

    Article  CAS  PubMed  Google Scholar 

  • Irwing H, Williams RJP (1953) The stability of transition metal complexes. J Chem Soc 3:3192–3210

    Article  Google Scholar 

  • Koziolkiewicz M, Wojcik M, Kobylanska A, Karwowski B, Rebowska B, Guga P, Stec WJ (1997) Stability of stereoregular oligo (nucleoside phosphorothioate)s in human plasma: diastereoselectivity of plasma 3′-exonuclease. Antisense Nucleic Acids Drug Dev 7:43–48

    CAS  Google Scholar 

  • Koziolkiewicz M, Gendaszewska E, Maszewska M, Stein CA, Stec WJ (2001) The mononucleotide-dependent, nonantisense mechanism of action of phosphodiester and phosphorothioate oligonucleotides depends upon the activity of an ecto-5′-nucleotidase. Blood 98:995–1002. doi:10.1182/blood.V98.4.995

    Article  CAS  PubMed  Google Scholar 

  • Koziolkiewicz M, Owczarek A, Wojcik M, Domanski K, Guga P, Stec WJ (2002) Retention of configuration in the action of human plasma 3′-exonuclease on oligo (deoxynucleoside phosphorothioate). A new method for assignment of absolute configuration at phosphorus in isotopomeric deoxyadenosine 5′-O-[18O]-phosphorothioate. J Am Chem Soc 124:4623–4627. doi:10.1021/ja017187u

    Article  CAS  PubMed  Google Scholar 

  • Luganini A, Caposio P, Landolfo S, Gribaudo G (2008) Phosphorothioate-modified oligodeoxynucleotides inhibit human cytomegalovirus replication by blocking virus entry. Antimicrob Agents Chemother 52:1111–1120. doi:10.1128/AAC.00987-07

    Article  CAS  PubMed  Google Scholar 

  • Nawrot B, Paul N, Rebowska B, Stec WJ (2008) Significance of stereochemistry of 3′-terminal phosphorothioate-modified primer in DNA polymerase-mediated chain extension. Mol Biotechnol 40:119–126. doi:10.1007/s12033-008-9096-x

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Kuo MD, Huang SS, Huang JS (1993) The major acidic fibroblast growth factor (aFGF)-stimulated phosphoprotein from bovine liver plasma membranes has aFGF-stimulated kinase, autoadenylylation, and alkaline nucleotide phosphodiesterase activities. J Biol Chem 268:27318–27326

    CAS  PubMed  Google Scholar 

  • Orr GA, Simon J, Jones SR, Chin GJ, Knowles JR (1978) Adenosine 5′-O-([gamma-18O]gamma-thio)triphosphate chiral at the gamma-phosphorus: stereochemical consequences of reactions catalyzed by pyruvate kinase, glycerol kinase, and hexokinase. Proc Natl Acad Sci USA 75:2230–2233

    Article  CAS  PubMed  Google Scholar 

  • Pearson RG (1968) Hard and soft acids and bases, HSAB, part I: fundamental principles. J Chem Educ 45:581–587

    Article  CAS  Google Scholar 

  • Rebbe NF, Tong BD, Finley EM, Hickman S (1991) Identification of nucleotide pyrophosphatase/alkaline phosphodiesterase I activity associated with the mouse plasma cell differentiation antigen PC-1. Proc Natl Acad Sci USA 88:5192–5196

    Article  CAS  PubMed  Google Scholar 

  • Sakagami H, Aoki J, Natori Y, Nishikawa K, Kakehi Y, Natori Y, Arai H (2005) Biochemical and molecular characterization of a novel choline-specific glycerophosphodiester phosphodiesterase belonging to the nucleotide pyrophosphatase/phosphodiesterase family. J Biol Chem 280:23084–23093. doi:10.1074/jbc.M413438200

    Article  CAS  PubMed  Google Scholar 

  • Sheu KF, Frey PA (1978) UDP-glucose pyrophosphorylase. Stereochemical course of the reaction of glucose 1- phosphate with uridine-5′ [1-thiotriphosphate]. J Biol Chem 253:3378–3380

    CAS  PubMed  Google Scholar 

  • Stec WJ, Grajkowski A, Kobylanska A, Karwowski B, Koziolkiewicz M, Misiura K, Okruszek A, Wilk A, Guga P, Boczkowska M (1995) Diastereomers of nucleoside 3-O-2-thio-1.3.2 oxathia(selena)phospholanes): building blocks for stereocontrolled synthesis of oligo(nucleoside phosphorothioate)s. J Am Chem Soc 117:12020–12029

    Article  Google Scholar 

  • Stefan C, Jansen S, Bollen M (2005) NPP-type ecto-phosphodiesterases: unity in diversity. Trends Biochem Sci 30:542–550. doi:10.1016/j.tibs.2005.08.005

    Article  CAS  PubMed  Google Scholar 

  • Stewart DJ, Donehower RC, Eisenhauer EA, Wainman N, Shah AK, Bonfils C, MacLeod AR, Besterman JM, Reid GK (2003) A phase I pharmacokinetic and pharmacodynamic study of the DNA methyltransferase 1 inhibitor MG98 administered twice weekly. Ann Oncol 14:766–774. doi:10.1093/annonc/mdg216

    Article  CAS  PubMed  Google Scholar 

  • Vaerman JL, Moureau P, Deldime F, Lewalle P, Lammineur C, Morschhauser F, Martiat P (1997) Antisense oligodeoxyribonucleotides suppress hematologic cell growth through stepwise release of deoxyribonucleotides. Blood 90:331–339

    CAS  PubMed  Google Scholar 

  • Wang S, Karbstein K, Peracchi A, Beigelman L, Herschlag D (1999) Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate. Biochemistry 38:14363–14378. doi:10.1021/bi9913202

    Article  CAS  PubMed  Google Scholar 

  • Warnecke JM, Furste JP, Hardt WD, Erdmann VA, Hartmann RK (1996) Ribonuclease P (RNase P) RNA is converted to a Cd (2+)-ribozyme by a single RP-phosphorothioate modification in the precursor tRNA at the RNase P cleavage site. Proc Natl Acad Sci USA 93:8924–8928

    Article  CAS  PubMed  Google Scholar 

  • Wojcik M, Cieslak M, Stec WJ, Goding JW, Koziolkiewicz M (2007) Nucleotide pyrophosphatase/phosphodiesterase 1 is responsible for degradation of antisense phosphorothioate oligonucleotides. Oligonucleotides 17:134–145. doi:10.1089/oli.2007.0021

    Article  CAS  PubMed  Google Scholar 

  • Zhou DM, He QC, Zhou JM, Taira K (1998) Explanation by a putative triester-like mechanism for the thio effects and Mn2+ rescues in reactions catalyzed by a hammerhead ribozyme. FEBS Lett 431:154–160. doi:10.1016/S0014-5793(98)00734-0

    Article  CAS  PubMed  Google Scholar 

  • Zon G, Stec WJ (1991) Phosphorothioate oligonucleotides. In: Eckstein F (ed) Oligonucleotides and analogues: a practical approach. IRL Press, Oxford, pp 87–108

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Krzysztof Domanski for synthesis of the PS oligonucleotides 2 and 3. This study was supported by 502-17-692 project from Medical University of Łódź (to M.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzena Wojcik.

Additional information

The experimental work was carried out at the Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences in Lódź.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojcik, M., Stec, W.J. The effect of divalent cations on the catalytic activity of the human plasma 3′-exonuclease. Biometals 23, 1113–1121 (2010). https://doi.org/10.1007/s10534-010-9358-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9358-5

Keywords

Navigation