Skip to main content

Advertisement

Log in

From GC-rich DNA binding to the repression of survivin gene for quercetin nickel (II) complex: implications for cancer therapy

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The DNA binding and cleavage properties of quercetin nickel (II) complex have been studied, but little attention has been devoted to the relationship between antitumor activity of this complex and DNA-binding properties. In the present study, we report that quercetin nickel (II) complex showed significant cytotoxicity against three tumor cell lines (HepG2, SMMC7721 and A549). Hoechst33258 and AO/EB staining showed HepG2 cells underwent the typical morphologic changes of apoptosis characterized by nuclear shrinkage, chromatin condensation, or fragmentation after exposure to quercetin nickel (II) complex. We also demonstrate that the levels of survivin and bcl-2 protein expression in HepG2 cells decreased concurrently, and the levels of p53 protein increased significantly after treatment with quercetin nickel (II) complex by immunocytochemistry analysis. The relative activity of caspase-3 and caspase-9 increased significantly after treatment with the complex. Furthermore, fluorescence measurements and molecular modeling were performed to learn that the complex could be preferentially bound to DNA in GC region. These results imply that quercetin nickel (II) complex may intercalate into the GC-rich core promoter region of survivin, down-regulating survivin gene expression and promoting tumor cells apoptosis. So our results suggest that antitumor activity of quercetin nickel (II) complex might be related to its intercalation into DNA and DNA-binding selectivity, and that the complex may be a promising agent for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albertini V, Jain A, Vignati S, Napoli S, Rinaldi A, Kwee I, Nur-e-Alam M, Bergant J, Bertoni F, Carbone GM, Rohr J, Catapano CV (2006) Novel GC-rich DNA-binding compound produced by a genetically engineered mutant of the mithramycin producer Streptomyces argillaceus exhibits improved transcriptional repressor activity: implications for cancer therapy. Nucleic Acids Res 34:1721–1734

    Article  CAS  PubMed  Google Scholar 

  • Altieri DC (2001) The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med 7:542–547

    Article  CAS  PubMed  Google Scholar 

  • Asadi M, Safaei E, Ranjbar B, Hasani L (2004) Thermodynamic and spectroscopic study on the binding of cationic Zn(II) and Co(II) tetrapyridinoporphyrazines to calf thymus DNA: the role of the central metal in binding parameters. New J Chem 28:1227–1234

    Article  CAS  Google Scholar 

  • Badran A, Yoshida A, Ishikawa K, Goi T, Yamaguchi A, Ueda T, Inuzuka M (2004) Identification of a novel splice variant of the human anti-apoptopsis gene survivin. Biochem Biophys Res Commun 314:902–907

    Article  CAS  PubMed  Google Scholar 

  • Foresman JB, Frisch AE (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc, Pittsburgh

    Google Scholar 

  • Gao F, Chao H, Zhou F, Chen X, Wei YF, Ji LN (2008) Synthesis, GC selective DNA binding and topoisomerase II inhibition activities of ruthenium(II) polypyridyl complex containing 11-aminopteridino[6,7-f][1,10]phenanthrolin-13(12H)-one. J Inorg Biochem 102:1050–1059

    Article  CAS  PubMed  Google Scholar 

  • Hecht SM (2000) Bleomycin: new perspectives on the mechanism of action. J Nat Prod 63:158–168

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Shiraki K, Sugimoto K, Yamanaka T, Fujikawa K, Ito M, Takase K, Moriyama M, Kawano H, Hayashida M, Nakano T, Suzuki A (2000) Survivin promotes cell proliferation in human hepatocellular carcinoma. Hepatology 31:1080–1085

    Article  CAS  PubMed  Google Scholar 

  • Koutsodontis G, Kardassis D (2004) Inhibition of p53-mediated transcriptional responses by mithramycin A. Oncogene 23:9190–9200

    CAS  PubMed  Google Scholar 

  • Kožurková M, Sabolová D, Janovec L, Mikes J, Kovaľ J, Ungvarský J, Stefanisinová M, Fedorocko P, Kristian P, Imrich J (2008) Cytotoxic activity of proflavine diureas: synthesis, antitumor, evaluation and DNA binding properties of 1′,1″-(acridin-3,6-diyl)-3′,3″-dialkyldiureas. Bioorg Med Chem 16:3976–3984

    Article  PubMed  Google Scholar 

  • Kuo PC, Liu HF, Chao JL (2004) Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in the human lung carcinoma cells. J Biol Chem 279:55875–55885

    Article  CAS  PubMed  Google Scholar 

  • Li WY, Zhu ST, He XW (2002) Study on the interaction mechanism between Ge-132 and DNA by spectral methods. Acta Chim Sin 60:105–108

    CAS  Google Scholar 

  • Metcalfe C, Thomas JA (2003) Kinetically inert transition metal complexes that reversibly bind to DNA. Chem Soc Rev 32:215–224

    Article  CAS  PubMed  Google Scholar 

  • Moon WS, Tarnawski AS (2003) Nuclear translocation of Survivin in hepatocellular carcinoma: a key to cancer cell growth? Hum Pathol 34:1119–1126

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Navarro M, Cisneros-Fajardo EJ, Sierralta A, Fernández-Mestre M, Silva P, Arrieche D, Marchán E (2003) Design of copper DNA intercalators with leishmanicidal activity. J Biol Inorg Chem 8:401–408

    CAS  PubMed  Google Scholar 

  • Ray R, Thomas S, Miller DM (1990) Mithramycin selectively inhibits the transcriptional activity of a transfected human c-myc gene. Am J Med Sci 300:203–208

    Article  CAS  PubMed  Google Scholar 

  • Remsing LL, Bahadori HR, Carbone GM, McGuffie EM, Catapano CV, Rohr J (2003) Inhibition of c-src transcription by mithramycin: structure-activity relationships of biosynthetically produced mithramycin analogues using the c-src promoter as target. Biochemistry 42:8313–8324

    Article  CAS  PubMed  Google Scholar 

  • Sastry M, Patel DJ (1993) Solution structure of the mithramycin dimer–DNA complex. Biochemistry 32:6588–6604

    Article  CAS  PubMed  Google Scholar 

  • Sastry M, Fiala R, Patel DJ (1995) Solution structure of mithramycin dimers bound to partially overlapping sites on DNA. J Mol Biol 251:674–689

    Article  CAS  PubMed  Google Scholar 

  • Sheng X, Guo X, Lu XM, Lu GY, Shao Y, Liu F, Xu Q (2008) DNA binding, cleavage, and cytotoxic activity of the preorganized dinuclear zinc(II) complex of triazacyclononane derivatives. Bioconjug Chem 19:490–498

    Article  CAS  PubMed  Google Scholar 

  • Silvestri A, Barone G, Ruisi G, Lo Giudice MT, Tumminello S (2004) The interaction of native DNA with iron(III)-N,N′-ethylene-bis(salicylideneiminato)-chloride. J Inorg Biochem 98:589–594

    Article  CAS  PubMed  Google Scholar 

  • Song YM, Wu Q, Yang PJ, Luan NN, Wang LF, Liu YM (2006) DNA Binding and cleavage activity of Ni (II) complex with all-trans retinoic acid. J Inorg Biochem 100:1685–1691

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Wang BC, Zhu LC (2007a) Hydrolytic cleavage of DNA by quercetin zinc(II) complex. Bioorg Med Chem Lett 17:1197–1199

    Article  CAS  Google Scholar 

  • Tan J, Wang BC, Zhu LC (2007b) Hydrolytic cleavage of DNA by quercetin manganese(II) complex. Colloid Surf B 55:149–152

    Article  CAS  Google Scholar 

  • Tan JH, Lu YJ, Huang ZS, Gu LQ, Wu JY (2007c) Spectroscopic studies of DNA binding modes of cation-substituted anthrapyrazoles derived from emodin. Eur J Med Chem 42:1169–1175

    Article  CAS  PubMed  Google Scholar 

  • Tan CP, Liu J, Chen LM, Shi S, Ji LN (2008) Synthesis, structural characteristics, DNA binding properties and cytotoxicity studies of a series of Ru (III) complexes. J Inorg Biochem 102:1644–1653

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Wang BC, Zhu LC (2009a) DNA binding, cytotoxicity, apoptotic inducing activity and molecular modeling study of quercetin zinc (II) complex. Bioorg Med Chem 17:614–620

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Wang BC, Zhu LC (2009b) DNA binding and oxidative DNA cleavage induced by quercetin copper (II) complex: potential mechanism of its antitumor properties. J Biol Inorg Chem 14:727–739

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Wang BC, Zhu LC (2009c) DNA binding and cleavage activity of quercetin nickel (II) complex. Dalton Trans 7:4722–4728

    Article  Google Scholar 

  • Wu JG, Ling X, Pan DL, Apontes P, Song L, Liang P, Altieri DC, Beerman T, Li FZ (2005) Molecular mechanism of inhibition of survivin transcription by the GC-rich sequence-selective DNA binding antitumor agent, hedamycin—evidence of survivin downregulation associated with drug sensitivity. J Biol Chem 280:9745–9751

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Zheng KC, Deng H, Lin LJ, Zhang QL, Ji LN (2003a) Effects of ligand planarity on the interaction of polypyridyl Ru(II) complexes with DNA. Dalton Trans 3:2260–2268

    Article  Google Scholar 

  • Xu H, Zheng KC, Deng H, Lin LJ, Zhang QL, Ji LN (2003b) Effects of the ancillary ligands of polypyridyl ruthenium(II) complexes on the DNA-binding behaviors. New J Chem 27:1255–1263

    Article  CAS  Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu CS, Bu XH, Yang M (2005) Synthesis, crystal structure, cytotoxic activity and DNA-binding properties of the copper (II) and zinc (II) complexes with 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene. J Inorg Biochem 99:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Zuber G, Quada JC Jr, Hecht SM (1998) Sequence selective cleavage of a DNA octanucleotide by chlorinated bithiazoles and bleomycins. J Am Chem Soc 12:9368–9369

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (No. 20901086), China Postdoctoral Science Foundation funded project (No. 20090450788), and the Fundamental Research Funds for the Central Universities (No. CDJRC10230002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, J., Zhu, L. & Wang, B. From GC-rich DNA binding to the repression of survivin gene for quercetin nickel (II) complex: implications for cancer therapy. Biometals 23, 1075–1084 (2010). https://doi.org/10.1007/s10534-010-9353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9353-x

Keywords

Navigation