Skip to main content

Advertisement

Log in

Anti-diabetic effects of vanadium(III, IV, V)–chlorodipicolinate complexes in streptozotocin-induced diabetic rats

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Vanadium(III, IV, V)–chlorodipicolinate (dipic-Cl) complexes, including H[VIII(dipic-Cl)2] · 5H2O (V3dipic-Cl), VIVO(dipic-Cl)(H2O)2 (V4dipic-Cl) and K[VVO2(dipic-Cl)] (V5dipic-Cl), were prepared with the indicated oxidation states. Our aim was to evaluate the anti-diabetic effects of V3dipic-Cl, V4dipic-Cl and V5dipic-Cl in streptozotocin-induced diabetic rats. Vanadium complexes were orally administered to diabetic rats at concentrations of 0.1–0.3 mg/ml in the drinking water. We found that vanadium–chlorodipicolinate (V–dipic-Cl) complexes at the concentration of 0.1 mg/ml did not exhibit blood glucose-lowering effects when administered to diabetic rats for 20 days. However, the levels of fasting blood glucose in diabetic rats were decreased after treatment with 0.3 mg/ml of V4dipic-Cl and V5dipic-Cl complexes for the following 20 days. Although administration of both V4dipic-Cl and V5dipic-Cl significantly lowered diabetic hyperglycemia, the vanadium intake from administration of V4dipic-Cl is nearly 1.5-fold greater compared to that of V5dipic-Cl. Treatment with the H2dipic-Cl ligand and all three V–dipic-Cl complexes significantly lowered serum cholesterol, while administration of the V5dipic-Cl complex lowered serum cholesterol significantly more than administration of the ligand alone. Treatment with ligand alone did not have an effect on serum triglyceride, while administration of the V4dipic-Cl and V5dipic-Cl significantly lowered the elevated serum triglyceride associated with diabetes. Oral administration of the ligand and all V–dipic-Cl complexes did significantly lower diabetes elevated serum alkaline phosphatase. Treatment with H2dipic-Cl ligand and V4dipic-Cl and V5dipicCl significantly lowered diabetes elevated aspartate amino transferase. These results indicate that the health of the treated animals did not seem to be further compromised compared to that of diabetic animals. In addition, oral administration of H2dipic-Cl, V3dipic-Cl, V4dipic-Cl and V5dipic-Cl did not alter diabetic serum creatinine and blood urea nitrogen levels, suggesting no significant side effects of vanadium treatment on renal functions at the dose of 0.3 mg/ml in diabetic rats. The results presented here suggest that the anti-diabetic effects of treatment with V–dipic-Cl complexes were likely associated in part with the oxidation state of vanadium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amin SS, Cryer K, Zhang B, Dutta SK, Eaton SS, Anderson OP, Miller SM, Reul BA, Brichard SM, Crans DC (2000) Chemistry and insulin-mimetic properties of bis(acetylacetonate)oxovanadium(IV) and derivatives. Inorg Chem 39:406–416. doi:10.1021/ic9905897

    Article  CAS  PubMed  Google Scholar 

  • Arkkila PE, Koskinen PJ, Kantola IM, Ronnemaa T, Seppanen E, Viikari JS (2001) Diabetic complications are associated with liver enzyme activities in people with type 1 diabetes. Diabetes Res Clin Pract 52:113–118. doi:10.1016/S0168-8227(00)00241-2

    Article  CAS  PubMed  Google Scholar 

  • Bennett RA, Pegg AE (1981) Alkylation of DNA in rat tissues following administration of streptozotocin. Cancer Res 41:2786–2790

    CAS  PubMed  Google Scholar 

  • Biesenbach G (1989) Disorders of lipid metabolism in diabetes mellitus. Wien Med Wochenschr Suppl 105:9–17

    CAS  PubMed  Google Scholar 

  • Buglyo P, Crans DC, Nagy EM, Lindo RL, Yang L, Smee JJ, Jin W, Chi LH, Godzala Iii ME, Willsky GR (2005) Aqueous chemistry of the vanadium(III) (V(III)) and the V(III)-dipicolinate systems and a comparison of the effect of three oxidation states of vanadium compounds on diabetic hyperglycemia in rats. Inorg Chem 44:5416–5427. doi:10.1021/ic048331q

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Maji M, Ghosh S, Mak TCW (1998) Studies of V(III) complexes with selected N-heterocyclic carboxylato NO donor ligands: structure of a new seven-coordinated pentagonal bipyramidal complex containing picolinato ligands. J Chem Soc Dalton Trans 3641–3646. doi:10.1039/a804160a

  • Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L (1995) Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 95:2501–2509. doi:10.1172/JCI117951

    Article  CAS  PubMed  Google Scholar 

  • Crans DC (2000) Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) compounds. J Inorg Biochem 80:123–131. doi:10.1016/S0162-0134(00)00048-9

    Article  CAS  PubMed  Google Scholar 

  • Crans DC, Yang L, Jakusch T, Kiss T (2000) Aqueous chemistry of ammonium (Dipicolinato)oxovanadate(V): the first organic vanadium(V) insulin-mimetic compound. Inorg Chem 39:4409–4416. doi:10.1021/ic9908367

    Article  CAS  Google Scholar 

  • Crans DC, Mahroof-Tahir M, Johnson MD, Wilkins PC, Yang L, Robbins K, Johnson A, Alfano JA, Godzala ME et al (2003) Vanadium(IV) and vanadium(V) complexes of dipicolinic acid and derivatives. Synthesis, X-ray structure, solution state properties and effects in rats with STZ-induced diabetes. Inorg Chim Acta 356:365–378. doi:10.1016/S0020-1693(03)00430-4

    Article  CAS  Google Scholar 

  • Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104:849–902. doi:10.1021/cr020607t

    Article  CAS  PubMed  Google Scholar 

  • Cusi K, Cukier S, DeFronzo RA, Torres M, Puchulu FM, Redondo JCP (2001) Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type 2 diabetes. J Clin Endocrinol Metab 86:1410–1417. doi:10.1210/jc.86.3.1410

    Article  CAS  PubMed  Google Scholar 

  • Goldfine AB, Patti M-E, Zuberi L, Goldstein BJ, LeBlanc R, Landaker EJ, Jiang ZY, Willsky GR, Kahn CR (2000) Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies. Metabolism 49:400–410. doi:10.1016/S0026-0495(00)90418-9

    Article  CAS  PubMed  Google Scholar 

  • Gylling H, Tuominen JA, Koivisto VA, Miettinen TA (2004) Cholesterol metabolism in type 1 diabetes. Diabetes 53:2217–2222. doi:10.2337/diabetes.53.9.2217

    Article  CAS  PubMed  Google Scholar 

  • Haratake M, Fukunaga M, Ono M, Nakayama M (2005) Synthesis of vanadium(IV, V) hydroxamic acid complexes and in vivo assessment of their insulin-like activity. J Biol Inorg Chem 10:250–258. doi:10.1007/s00775-005-0634-8

    Article  CAS  PubMed  Google Scholar 

  • Heyliger CE, Tahiliani AG, McNeill JH (1985) Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227:1474–1477. doi:10.1126/science.3156405

    Article  CAS  PubMed  Google Scholar 

  • Kawabe K, Yoshikawa Y, Adachi Y, Sakurai H (2006) Possible mode of action for insulinomimetic activity of vanadyl(IV) compounds in adipocytes. Life Sci 78:2860–2866. doi:10.1016/j.lfs.2005.11.008

    Article  CAS  PubMed  Google Scholar 

  • Koyuturk M, Tunali S, Bolkent S, Yanardag R (2005) Effects of vanadyl sulfate on liver of streptozotocin-induced diabetic rats. Biol Trace Elem Res 104:233–247. doi:10.1385/BTER:104:3:233

    Article  CAS  PubMed  Google Scholar 

  • Li M, Smee JJ, Ding W, Crans DC (2009) Anti-diabetic effects of sodium 4-amino-2,6-dipicolinatodioxovanadium(V) dihydrate in streptozotocin-induced diabetic rats. J Inorg Biochem 103:585. doi:10.1016/j.jinorgbio.2008.11.011

    Article  CAS  PubMed  Google Scholar 

  • Makinen MW, Brady MJ (2002) Structural origins of the insulin-mimetic activity of bis(acetylacetonato)oxovanadium(IV). J Biol Chem 277:12215–12220. doi:10.1074/jbc.M110798200

    Article  CAS  PubMed  Google Scholar 

  • Marzban L, Rahimian R, Brownsey RW, McNeill JH (2002) Mechanisms by which bis(maltolato)oxovanadium(IV) normalizes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression in streptozotocin-diabetic rats in vivo. Endocrinology 143:4636. doi:10.1210/en.2002-220732

    Article  CAS  PubMed  Google Scholar 

  • McNeill JH, Yuen VG, Dai S, Orvig C (1995) Increased potency of vanadium using organic ligands. Mol Cell Biochem 153:175–180. doi:10.1007/BF01075935

    Article  CAS  PubMed  Google Scholar 

  • Mehdi MZ, Pandey SK, Theberge JF, Srivastava AK (2006) Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochem Biophys 44:73–81. doi:10.1385/CBB:44:1:073

    Article  CAS  PubMed  Google Scholar 

  • Melchior M, Rettig SJ, Liboiron BD, Thompson KH, Yuen VG, McNeill JH, Orvig C (2001) Insulin-enhancing vanadium(III) complexes. Inorg Chem 40:4686–4690. doi:10.1021/ic000984t

    Article  CAS  PubMed  Google Scholar 

  • Nannipieri M, Gonzales C, Baldi S, Posadas R, Williams K, Haffner SM, Stern MP, Ferrannini E (2005) Liver enzymes, the metabolic syndrome, and incident diabetes: the Mexico City diabetes study. Diabetes Care 28:1757–1762. doi:10.2337/diacare.28.7.1757

    Article  CAS  PubMed  Google Scholar 

  • Ooms KJ, Bolte SE, Smee JJ, Baruah B, Crans DC, Polenova T (2007) Investigating the vanadium environments in hydroxylamido V(V) dipicolinate complexes using 51V NMR spectroscopy and density functional theory. Inorg Chem 46:9285–9293. doi:10.1021/ic7012667

    Article  CAS  PubMed  Google Scholar 

  • Ramanadham S, Mongold JJ, Brownsey RW, Cros GH, McNeill JH (1989) Oral vanadyl sulfate in treatment of diabetes mellitus in rats. Am J Physiol 257:H904–H911

    CAS  PubMed  Google Scholar 

  • Rehder D, Costa Pessoa J, Geraldes CF, Castro MC, Kabanos T, Kiss T, Meier B, Micera G, Pettersson L et al (2002) In vitro study of the insulin-mimetic behaviour of vanadium(IV, V) coordination compounds. J Biol Inorg Chem 7:384–396. doi:10.1007/s00775-001-0311-5

    Article  CAS  PubMed  Google Scholar 

  • Reul BA, Amin SS, Buchet JP, Ongemba LN, Crans DC, Brichard SM (1999) Effects of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats. Br J Pharmacol 126:467–477. doi:10.1038/sj.bjp.0702311

    Article  CAS  PubMed  Google Scholar 

  • Sakurai H, Fujii K, Watanabe H, Tamura H (1995) Orally active and long-term acting insulin-mimetic vanadyl complex: bis(Picolinato)oxovanadium(IV). Biochem Biophys Res Commun 214:1095–1101. doi:10.1006/bbrc.1995.2398

    Article  CAS  PubMed  Google Scholar 

  • Sakurai H, Sano H, Takino T, Yasui H (2000) An orally active antidiabetic vanadyl complex, bis(1-oxy-2-pyridinethiolato)oxovanadium(IV), with VO(S2O2) coordination mode; in vitro and in vivo evaluations in rats. J Inorg Biochem 80:99–105. doi:10.1016/S0162-0134(00)00045-3

    Article  CAS  PubMed  Google Scholar 

  • Smee JJ, Epps JA, Ooms K, Bolte SE, Polenova T, Baruah B, Yang L, Ding W, Li M et al (2009) Chloro-substituted dipicolinate vanadium complexes: synthesis, solution, solid-state, and insulin-enhancing properties. J Inorg Biochem 103:575. doi:10.1016/j.jinorgbio.2008.12.015

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Mehdi MZ (2004) Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabet Med 22:2–13. doi:10.1111/j.1464-5491.2004.01381.x

    Article  Google Scholar 

  • Tan BKH, Tan CH, Pushparaj PN (2005) Anti-diabetic activity of the semi-purified fractions of Averrhoa bilimbi in high fat diet fed-streptozotocin-induced diabetic rats. Life Sci 76:2827–2839. doi:10.1016/j.lfs.2004.10.051

    Article  CAS  PubMed  Google Scholar 

  • Thompson KH, Orvig C (2001) Coordination chemistry of vanadium in metallopharmaceutical candidate compounds. Coord Chem Rev 219–221:1033–1053. doi:10.1016/S0010-8545(01)00395-2

    Article  Google Scholar 

  • Thompson KH, Orvig C (2006) Vanadium in diabetes: 100 years from Phase 0 to Phase I. J Inorg Biochem 100:1925–1935. doi:10.1016/j.jinorgbio.2006.08.016

    Article  CAS  PubMed  Google Scholar 

  • Tracey AS, Willsky GR, Takeuchi ES (2007) Vanadium chemistry biochemistry, pharmacology and practical applications, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Wei D, Li M, Ding W (2007) Effect of vanadate on gene expression of the insulin signaling pathway in skeletal muscle of streptozotocin-induced diabetic rats. J Biol Inorg Chem 12:1265–1273. doi:10.1007/s00775-007-0294-y

    Article  CAS  PubMed  Google Scholar 

  • Willsky GR, Chi LH, Liang Y, Gaile DP, Hu Z, Crans DC (2006) Diabetes-altered gene expression in rat skeletal muscle corrected by oral administration of vanadyl sulfate. Physiol Genomics 26:192–201. doi:10.1152/physiolgenomics.00196.2005

    Article  CAS  PubMed  Google Scholar 

  • Yasui H, Tamura A, Takino T, Sakurai H (2002) Structure-dependent metallokinetics of antidiabetic vanadyl–picolinate complexes in rats: studies on solution structure, insulinomimetic activity, and metallokinetics. J Inorg Biochem 91:327. doi:10.1016/S0162-0134(02)00443-9

    Article  CAS  PubMed  Google Scholar 

  • Yuen VG, Orvig C, McNeill JH (1993) Glucose-lowering effects of a new organic vanadium complex, bis(maltolato)oxovanadium(IV). Can J Physiol Pharmacol 71:263–269

    CAS  PubMed  Google Scholar 

  • Yuen VG, Vera E, Battell ML, Li W, McNeill JH (1999) Acute and chronic oral administration of bis(maltolato)oxovanadium(IV) in Zucker diabetic fatty(ZDF) rats. Diabetes Res Clin Pract 43:9–19. doi:10.1016/S0168-8227(98)00120-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by China National Natural Sciences Foundation (No. 20571084). JJS thanks the Welch Foundation for funding. DCC thanks NSF (CHE 0628260) for funding of this research. We thank Dr. Guanmin Chen for informative discussion on statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjun Ding or Debbie C. Crans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Ding, W., Smee, J.J. et al. Anti-diabetic effects of vanadium(III, IV, V)–chlorodipicolinate complexes in streptozotocin-induced diabetic rats. Biometals 22, 895–905 (2009). https://doi.org/10.1007/s10534-009-9241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9241-4

Keywords

Navigation