Skip to main content

Advertisement

Log in

The redox hypothesis in siderophore-mediated iron uptake

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The viability of iron(III/II) reduction as the initial step in the in vivo release of iron from its thermodynamically stable siderophore complex is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrecht-Gary AM, Crumbliss AL (1998) Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release. In: Sigel A, Sigel H (eds) Metal ions in biological systems. M. Dekker, New York

    Google Scholar 

  • Barchini E, Cowart RE (1996) Extracellular iron reductase activity produced by Listeria monocytogenes. Arch Microbiol 166:51–57. doi:10.1007/s002030050354

    Article  PubMed  CAS  Google Scholar 

  • Berczi A, Su D, Asard H (2007) An Arabidopsis cytochrome b561 with trans-membrane ferrireductase capability. FEBS Lett 581:1505–1508. doi:10.1016/j.febslet.2007.03.006

    Article  PubMed  CAS  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339. doi:10.1023/A:1020218608266

    Article  PubMed  CAS  Google Scholar 

  • Bradić Z, Wilkins RG (1984) Comparative behavior in the kinetics of reduction by superoxide and dithionite ions. J Am Chem Soc 106:2236–2239. doi:10.1021/ja00320a002

    Article  Google Scholar 

  • Carrano CJ, Cooper SR, Raymond KN (1979) Coordination chemistry of microbial iron transport compounds 11. Solution equilibrium and electrochemistry of ferric rhodotorulate complexes. J Am Chem Soc 101:599. doi:10.1021/ja00497a019

    Article  CAS  Google Scholar 

  • Carrano CJ, Dreschel H, Kaiser D, Jung G, Matzanke B, Winkelmann G, Rochel N, Albrecht-Gary AM (1996) Coordination chemistry of the carboxylate type siderophore rhizoferrin: the iron(III) complex and its metal analogs. Inorg Chem 35:6429–6436. doi:10.1021/ic960526d

    Article  PubMed  CAS  Google Scholar 

  • Chatfield CH, Cianciotto NP (2007) The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect Immun 75:4062–4070. doi:10.1128/IAI.00489-07

    Article  PubMed  CAS  Google Scholar 

  • Chiu HJ, Johnson E, Schroder I, Rees DC (2001) Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+. Structure 9:311–319. doi:10.1016/S0969-2126(01)00589-5

    Article  PubMed  CAS  Google Scholar 

  • Cobessi D, Celia H, Pattus F (2005) Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. J Mol Biol 352:893–904. doi:10.1016/j.jmb.2005.08.004

    Article  PubMed  CAS  Google Scholar 

  • Cooper SR, McArdle JV, Raymond KN (1978) Siderophore electrochemistry: relation to intracellular iron release mechanism. Proc Natl Acad Sci USA 75:3551–3554. doi:10.1073/pnas.75.8.3551

    Article  PubMed  CAS  Google Scholar 

  • Cowart RE (2002) Reduction of iron by extracellular iron reductases: implications for microbial iron acquisition. Arch Biochem Biophys 400:273–281. doi:10.1016/S0003-9861(02)00012-7

    Article  PubMed  CAS  Google Scholar 

  • Cox CD (1980) Iron reductases from Pseudomonas aeruginosa. J Bacteriol 141:199–204

    PubMed  CAS  Google Scholar 

  • Crichton R (2001) Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences. Wiley, Chichester

    Google Scholar 

  • Crumbliss AL (1991) Aqueous solution equilibrium and kinetic studies of iron siderophore and model siderophore complexes. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC Press, Boca Raton

    Google Scholar 

  • Crumbliss AL, Harrington JM (2008) Iron sequestration by small molecules: thermodynamic and kinetic studies of natural siderophores and synthetic model compounds. Adv Inorg Chem 61 (in press)

  • Dhungana S, Crumbliss AL (2005) Coordination chemistry and redox processes in siderophore-mediated iron transport. Geomicrobiology 22:87–98

    Article  CAS  Google Scholar 

  • Dhungana S, Miller MJ, Dong L, Ratledge C, Crumbliss AL (2003) Iron chelation properties of an extracellular siderophore exochelin MN. J Am Chem Soc 125:7654–7663. doi:10.1021/ja029578u

    Article  PubMed  CAS  Google Scholar 

  • Dhungana S, Anthony CRIII, Hersman LE (2007) Ferrihydrite dissolution by pyridine-2, 6-bis(monothiocarboxylic acid) and hydrolysis products. Geochim Cosmochim Acta 71:5651–5660. doi:10.1016/j.gca.2007.07.022

    Article  CAS  Google Scholar 

  • Dodgen HW, Liu G, Hunt JP (1981) Water exchange with ferric ion and oligomerized iron in acidic aqueous solutions. Inorg Chem 20:1002–1005. doi:10.1021/ic50218a011

    Article  CAS  Google Scholar 

  • Grant M, Jordan RB (1981) Kinetics of solvent water exchange on iron(III). Inorg Chem 20:55–60. doi:10.1021/ic50215a014

    Article  CAS  Google Scholar 

  • Greenwood KT, Luke RKJ (1978) Enzymatic hydrolysis of enterochelin and its iron complex in Escherichia coli K-12. Properties of enterochelin esterase. Biochim Biophys Acta 525:209–218

    PubMed  CAS  Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc Royal Soc Lond Ser A 147:332–351

    Article  CAS  Google Scholar 

  • Halle F, Meyer JM (1992) Ferrisiderophore reductases of Pseudomonas : purification, properties and cellular location of the Pseudomonas aeruginosa ferripyoverdine reductase. Eur J Biochem 209:613–620. doi:10.1111/j.1432-1033.1992.tb17327.x

    Article  PubMed  CAS  Google Scholar 

  • Henderson RA (1994) The mechanisms of reactions at transition metal sites. Oxford University Press, Oxford

    Google Scholar 

  • Inman RS, Coughlan MM, Wessling-Resnick M (1994) Extracellular ferrireductase activity of K562 cells is coupled to transferrin-independent iron transport. Biochemistry 33:11850–11857. doi:10.1021/bi00205a022

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann F, Lovley DR (2001) Isolation and characterization of a soluble NADPH-dependent Fe(III) reductase from Geobacter sulfurreducens. J Bacteriol 183:4468–4476. doi:10.1128/JB.183.15.4468-4476.2001

    Article  PubMed  CAS  Google Scholar 

  • Kazmi SA, Shorter AL, McArdle JV (1982) Kinetics of reduction of ferrioxamine B by chromium(II), vanadium(II), and dithionite. J Inorg Biochem 17:269–281. doi:10.1016/S0162-0134(00)80088-4

    Article  CAS  Google Scholar 

  • Kazmi SA, Shorter AL, McArdle JV (1984) Kinetics of reduction of ferrichrome and ferrichrome A by chromium(II), europium(II), vanadium(II), and dithionite. Inorg Chem 23:4331–4332. doi:10.1021/ic00193a045

    Article  Google Scholar 

  • Kazmi SA, Shorter AL, McArdle JV (1986) Mechanisms of iron release from microbial iron transport compounds. In: Atta-ur-Rahman Le, Quesne PW (eds) New trends in natural products chemistry. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Klumpp C, Burger A, Mislin ML, Abdallah MA (2005) From a total synthesis of cepabactin and its 3:1 ferric complex to the isolation of a 1:1:1 mixed complex between iron (III), cepabactin and pyochelin. Bioorg Med Chem Lett 15:1721–1724. doi:10.1016/j.bmcl.2005.01.034

    Article  PubMed  CAS  Google Scholar 

  • Kremer SM, Wood PM (1992) Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase: kinetic comparison with neutorphil NADPH oxidase and yeast flavocytochrome b2. Eur J Biochem 205:133–138. doi:10.1111/j.1432-1033.1992.tb16760.x

    Article  PubMed  CAS  Google Scholar 

  • Lambeth DO, Palmer G (1973) The Kinetics and mechanism of reduction of electron transfer proteins and other compounds of biological interest by dithionite. J Biol Chem 248:6095–6103

    PubMed  CAS  Google Scholar 

  • Le Faou AE, Morse SA (1991) Characterization of a soluble ferric reductase from Neisseria gonorrhoeae. Biol Met 4:126–131. doi:10.1007/BF01135390

    Article  PubMed  CAS  Google Scholar 

  • Lee CW, Ecker DJ, Raymond KN (1985) Coordination chemistry of microbial iron transport compounds. 34. The pH-dependent reduction of ferric enterobactin probed by electrochemical methods and its implications for microbial iron transport. J Am Chem Soc 107:6920–6923. doi:10.1021/ja00310a030

    Article  CAS  Google Scholar 

  • Lee PL, Halloran C, Cross AR, Beutler E (2000) NADH-ferric reductase activity associated with dihydropteridine reductase. Biochem Biophys Res Commun 271:788–795. doi:10.1006/bbrc.2000.2708

    Article  PubMed  CAS  Google Scholar 

  • Liger D, Graille M, Zhou CZ, Leulliot N, Quevillon-Cheruel S, Blondeau K, Janin J, van Tilbeurgh H (2004) Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J Biol Chem 279:34890–34897. doi:10.1074/jbc.M405404200

    Article  PubMed  CAS  Google Scholar 

  • Martell AE, Smith RM (1989) Critical stability constants. Plenum, New York

    Google Scholar 

  • Matzanke BF, Anemuller S, Schunemann V, Trautwein AX, Hantke K (2004) FhuF, part of a siderophore-reductase system. Biochemistry 43:1386–1392

    Article  PubMed  CAS  Google Scholar 

  • Mazoch J, Tesarik R, Sedlacek V, Kucera I, Turanek J (2004) Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur J Biochem 271:553–562. doi:10.1046/j.1432-1033.2003.03957.x

    Article  PubMed  CAS  Google Scholar 

  • McKie AT, Latunde-Dada GO, Miret S, McGregor JA, Anderson GJ, Vulpe CD, Wrigglesworth JM, Simpson RJ (2002) Molecular evidence for the role of a ferric reductase in iron transport. Biochem Soc Trans 30:722–724. doi:10.1042/BST0300722

    Article  PubMed  CAS  Google Scholar 

  • Mies KA, Wirgau JI, Crumbliss AL (2006) Ternary complex formation facilitates a redox mechanism for iron release from a siderophore. Biometals 19:115–126. doi:10.1007/s10534-005-4342-1

    Article  PubMed  CAS  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451. doi:10.1128/MMBR.00012-07

    Article  PubMed  CAS  Google Scholar 

  • Moller C, van Heerden E (2006) Isolation of a soluble and membrane-associated Fe(III) reductase from the thermophile, Thermus scotoductus. FEMS Microbiol Lett 265:237–243. doi:10.1111/j.1574-6968.2006.00499.x

    Article  PubMed  CAS  Google Scholar 

  • Moody MA, Dailey HA (1985) Ferric iron reductase of Rhodopseudomonas sphaeroides. J Bacteriol 163:1120–1125

    PubMed  CAS  Google Scholar 

  • Moore RE, Kim Y, Philpott CC (2003) The mechanism of ferrichrome transport through Arn1p and its metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100:5664–5669. doi:10.1073/pnas.1030323100

    Article  PubMed  CAS  Google Scholar 

  • Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, Fleming MD (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37:1264–1269. doi:10.1038/ng1658

    Article  PubMed  CAS  Google Scholar 

  • Poch MT, Johnson W (1993) Ferric reductases of Legionella pneumophila. Biometals 6:107–114. doi:10.1007/BF00140111

    Article  PubMed  CAS  Google Scholar 

  • Raymond KN, Dertz EA (2004) Biochemical and physical properties of siderophores. In: Crosa JH, Rey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, DC, pp 3–17

    Google Scholar 

  • Raymond KN, Dertz EA, Kim SS (2003) Bioinorganic chemistry special feature: enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 100:3584–3588. doi:10.1073/pnas.0630018100

    Article  PubMed  CAS  Google Scholar 

  • Redinbaugh MG, Campbell WH (1983) Reduction of ferric citrate catalyzed by NADH:nitrate reductase. Biochem Biophys Res Commun 114:1182–1188. doi:10.1016/0006-291X(83)90687-3

    Article  PubMed  CAS  Google Scholar 

  • Richens DT (2005) Ligand substitution reactions at inorganic centers. Chem Rev 105:1961–2002. doi:10.1021/cr030705u

    Article  PubMed  CAS  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–698. doi:10.1038/17800

    Article  PubMed  CAS  Google Scholar 

  • Roman DG, Dancis A, Anderson GJ, Klausner RD (1993) The fission yeast ferric reductase gene frp1+ is required for ferric iron uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase. Mol Cell Biol 13:4342–4350

    PubMed  CAS  Google Scholar 

  • Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci 8:188. doi:10.1016/S1360-1385(03)00048-7

    Article  PubMed  CAS  Google Scholar 

  • Sparla F, Preger V, Pupillo P, Trost P (1999) Characterization of a novel NADH-specific, FAD-containing, soluble reductase with ferric citrate reductase activity from maize seedlings. Arch Biochem Biophys 363:301–308. doi:10.1006/abbi.1998.1085

    Article  PubMed  CAS  Google Scholar 

  • Spasojević I, Armstrong SK, Brickman TJ, Crumbliss AL (1999) Electrochemical behavior of the Fe(III) complexes of the cyclic hydroxamate siderophores alcaligin and desferrioxamine E. Inorg Chem 38:449–454. doi:10.1021/ic980635n

    Article  PubMed  Google Scholar 

  • Swaddle TW, Merbach AE (1981) High-pressure oxygen-17 Fourier transform nuclear magnetic resonance spectroscopy. Mechanism of water exchange on iron(III) in acidic aqueous solution. Inorg Chem 20:4212–4216

    Article  CAS  Google Scholar 

  • Takeda K, Iizuka M, Watanabe T, Nakagawa J, Kawasaki S, Niimura Y (2007) Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction. FEBS J 274:1318–1327. doi:10.1111/j.1742-4658.2007.05680.x

    Article  PubMed  CAS  Google Scholar 

  • Timmerman MM, Woods JP (2001) Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum. Infect Immun 69:7671–7678. doi:10.1128/IAI.69.12.7671-7678.2001

    Article  PubMed  CAS  Google Scholar 

  • Umbreit JN, Conrad ME, Moore EG, Desai MP, Turrens J (1996) Paraferritin: a protein complex with ferrireductase activity is associated with iron absorption in rats. Biochemistry 35:6460–6469. doi:10.1021/bi951927s

    Article  PubMed  CAS  Google Scholar 

  • Vadas A, Monbouquette HG, Johnson E, Schroder I (1999) Identification and characterization of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Biol Chem 274:36715–36721. doi:10.1074/jbc.274.51.36715

    Article  PubMed  CAS  Google Scholar 

  • Vargas JD, Herpers B, McKie AT, Gledhill S, McDonnell J (2003) Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. Biochim Biophys Acta 1651:116–123

    PubMed  CAS  Google Scholar 

  • Vartivarian SE, Cowart RE (1999) Extracellular iron reductases: identification of a new class of enzymes by siderophore-producing microorganisms. Arch Biochem Biophys 364:75–82. doi:10.1006/abbi.1999.1109

    Article  PubMed  CAS  Google Scholar 

  • Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol 129:85–94. doi:10.1104/pp.010829

    Article  PubMed  CAS  Google Scholar 

  • Waters BM, Lucena C, Romera FJ, Jester GG, Wynn AN, Rojas CL, Alcantara E, Perez-Vincente R (2007) Ethylene involvement in the regulation of the H+-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants. Plant Physiol Biochem 45:293–301. doi:10.1016/j.plaphy.2007.03.011

    Article  PubMed  CAS  Google Scholar 

  • Wawrousek EF, McArdle JV (1982) Spectroelectrochemistry of ferrioxamine B, ferrichrome, and ferrichrome A. J Inorg Biochem 17:169–183. doi:10.1016/S0162-0134(00)80097-5

    Article  CAS  Google Scholar 

  • Weber G, von Wiren N, Hayen H (2008) Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine. Biometals 21:503–513. doi:10.1007/s10534-008-9137-8

    Article  PubMed  CAS  Google Scholar 

  • Wilkins RG (1991) Kinetics and mechanism of reactions of transition metal complexes. VCH, Weinham

    Book  Google Scholar 

  • Winkelmann G (1991) Handbook of microbial iron chelates. CRC Press, Boca Raton

    Google Scholar 

  • Wirgau JI, Spasojević I, Boukhalfa H, Batinić-Haberle I, Crumbliss AL (2002) Thermodynamics, kinetics, and mechanism of the stepwise dissociation and formation of tris(l-lysinehydroxamato)iron(III) in aqueous acid. Inorg Chem 41:1464. doi:10.1021/ic0109795

    Article  PubMed  CAS  Google Scholar 

  • Xia M, Wei J, Lei Y, Ying L (2007) A novel ferric reductase purified from Magnetospirillum gryphiswaldense MSR-1. Curr Microbiol 55:71–75. doi:10.1007/s00284-007-0023-3

    Article  PubMed  CAS  Google Scholar 

  • Yi Y, Guerinot ML (1996) Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J 10:835–844. doi:10.1046/j.1365-313X.1996.10050835.x

    Article  PubMed  CAS  Google Scholar 

  • Yun CW, Bauler M, Moore RE, Klebbas PE, Philpott CC (2001) The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem 276:10218–10223. doi:10.1074/jbc.M010065200

    Article  PubMed  CAS  Google Scholar 

  • Zamowski R, Woods JP (2005) Glutathione-dependent extracellular ferric reductase activities in dimorphic zoopathogenic fungi. Microbiology 151:2233–2240. doi:10.1099/mic.0.27918-0

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation (CHE 0809466) for their support of our work in this area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin L. Crumbliss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrington, J.M., Crumbliss, A.L. The redox hypothesis in siderophore-mediated iron uptake. Biometals 22, 679–689 (2009). https://doi.org/10.1007/s10534-009-9233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9233-4

Keywords

Navigation