Skip to main content
Log in

Reduction of molybdate by sulfate-reducing bacteria

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Molybdate is an essential trace element required by biological systems including the anaerobic sulfate-reducing bacteria (SRB); however, detrimental consequences may occur if molybdate is present in high concentrations in the environment. While molybdate is a structural analog of sulfate and inhibits sulfate respiration of SRB, little information is available concerning the effect of molybdate on pure cultures. We followed the growth of Desulfovibrio gigas ATCC 19364, Desulfovibrio vulgaris Hildenborough, Desulfovibrio desulfuricans DSM 642, and D. desulfuricans DSM 27774 in media containing sub-lethal levels of molybdate and observed a red-brown color in the culture fluid. Spectral analysis of the culture fluid revealed absorption peaks at 467, 395 and 314 nm and this color is proposed to be a molybdate–sulfide complex. Reduction of molybdate with the formation of molybdate disulfide occurs in the periplasm D. gigas and D. desulfuricans DSM 642. From these results we suggest that the occurrence of poorly crystalline Mo-sulfides in black shale may be a result from SRB reduction and selective enrichment of Mo in paleo-seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Banat IM, Lindström EB, Nedwell DB, Balba MT (1981) Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria on salt marsh sediment. Appl Environ Microbiol 42:985–992

    PubMed  CAS  Google Scholar 

  • Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 65 (in press)

  • Barton LL, Plunkett RM, Thomson BM (2003) Reduction of metals and nonessential elements by anaerobes. In: Ljungdahl LG, Adams MW, Barton LL, Ferry JG, Johnson MK (eds) Biochemistry and Physiology of Anaerobic Bacteria. Springer, New York, pp 220–234

    Chapter  Google Scholar 

  • Barton LL, Goulhen F, Bruschi M, Woodards NA, Plunkett RM, Rietmeijer FJM (2007) The bacterial metallome: composition and stability with specific reference to the anaerobic bacterium Desulfovibrio desulfuricans. Biometals 20:291–302. doi:10.1007/s10534-006-9059-2

    Article  PubMed  CAS  Google Scholar 

  • Brondino CD, Passeggi MC, Caldeira J, Almendra MJ, Feio MJ, Moura JJ, Moura I (2004) Incorporation of ether molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491.EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenase from sulfate-reducing bacteria. J Biol Inorg Chem 9:145–151. doi:10.1007/s00775-003-0506-z

    Article  PubMed  CAS  Google Scholar 

  • Bruschi M, Barton LL, Goulhen F, Plunkett RM (2007) Enzymatic and genomic studies on the reduction of mercury and selected metallic oxyanions by sulphate-reducing bacteria. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 435–458

    Google Scholar 

  • Campbell AM, del Campillo-Campbell A, Villaret DB (1985) Molybdate reduction by Escherichia coli K-12 and its chl mutants. Proc Natl Acad Sci USA 82:227–231. doi:10.1073/pnas.82.1.227

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Ford TE, Clayton CR (1998) Interaction of sulfate-reducing bacteria with molybdenum dissolved from sputter-deposited molybdenum thin films and pure molybdenum powder. J Colloid Interface Sci 204:237–246. doi:10.1006/jcis.1998.5578

    Article  PubMed  CAS  Google Scholar 

  • Cooms J, Barkay T (2005) Horizontal gene transfer of metal homeostasis genes and its role in microbial communities of the deep terrestrial subsurface. In: Gadd GM, Semple KT, Lappin-Scott HM (eds) Sixty-fifth symposium of the society for general microbiology. Cambridge Univeristy Press, Cambridge, pp 109–130

    Google Scholar 

  • Czechowski M, Fauque G, Galliano N, Dimon B, Moura I, Moura JJG, Xavier AV, Barata AS, Lino A, LeGall J (1986) Purification and characterization of three proteins from a halophilic, sulfate-reducing bacterium, Desulfovibrio salexigens. J Ind Microbiol 1:139–147. doi:10.1007/BF01569265

    Article  CAS  Google Scholar 

  • Fan D (1983) Polyelements in the Lower Cambrian black shale series in southern China. In: Augustitithis SS (ed) The significance of trace elements in solving petrogenetic problems and controversies. Theophrastus Publications S.A., Athens, pp 447–474

    Google Scholar 

  • Grunden AM, Shanmugam KT (1997) Molybdate transport and regulation in bacteria. Arch Microbiol 168:345–354. doi:10.1007/s002030050508

    Article  PubMed  CAS  Google Scholar 

  • Hatchikian EC, Bruschi M (1979) Isolation and characterization of a molybdenium iron-sulfur protein from Desulfovibrio africanus. Biochem Biophys Res Commun 86:725–734. doi:10.1016/0006-291X(79)91773-X

    Article  PubMed  CAS  Google Scholar 

  • He Q, Huang KH, He Z, Alm EJ, Fields MW, Hazen TC, Arkin AP, Wall JD, Zhou J (2006) Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough, inferred from global transcription analysis. Appl Environ Microbiol 72:4370–4381. doi:10.1128/AEM.02609-05

    Article  PubMed  CAS  Google Scholar 

  • Jonkers HM, van der Maarel MJEC, van Gemerden H, Hansen TA (1996) Dimethylsulfoxide reduction by marine sulfate-reducing bacteria. FEMS Microbiol Lett 136:283–287

    CAS  Google Scholar 

  • Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69:760–768. doi:10.1128/AEM.69.2.760-768.2003

    Article  PubMed  CAS  Google Scholar 

  • Kredich NM (1987) Biosynthesis of cysteine. In: Ingraham JL, Brooks Low K, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium cellular and molecular biology, vol 1. American Society for Microbiology, Washington DC, pp 419–428

    Google Scholar 

  • Lee J-W, Helmann JD (2007) Functional specialization within the Fur family of metalloregulators. Biometals 20:485–499. doi:10.1007/s10534-006-9070-7

    Article  PubMed  CAS  Google Scholar 

  • Lespinat PA, Berlier YM, Fauque GD, Toci R, Denariaz G, LeGall J (1987) The relationship between hydrogen metabolism, sulfate reduction and nitrogen fixation in sulfate reducers. J Ind Microbiol 1:383–388. doi:10.1007/BF01569336

    Article  CAS  Google Scholar 

  • Li S, Gao Z (2000) Tracing the origin of precious metals in Lower Cambrian black shale (in Chinese). Sci China 30 D:169–174

    Google Scholar 

  • Lyimo TJ, Pol A, Op den Camp HJM (2002) Sulfate reduction and methanogenesis in sediments of Mtoni Mangrove Forest, Tanzania. Ambio 31:614–616. doi:10.1639/0044-7447(2002)031[0614:SRAMIS]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Mendel RR (2005) Molybdenum: biological activity and metabolism. Dalton Trans 21:3404–3409. doi:10.1039/b505527j

    Article  PubMed  CAS  Google Scholar 

  • Moura JJG, Barata BAS (1994) Aldehyde oxidoreductases and other molybdenum-containing enzymes. Methods Enzymol 243:24–42. doi:10.1016/0076-6879(94)43006-3

    Article  CAS  Google Scholar 

  • Moura JJG, Brondino CD, Trincao J, Romao MJ (2004) Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. J Biol Inorg Chem 9:791–799. doi:10.1007/s00775-004-0573-9

    Article  PubMed  CAS  Google Scholar 

  • Moura JJG, Gonzalez P, Moura I, Fauque G (2007) Dissimilatroy nitrate and nitrite ammonification by sulphate-reducing bacteria. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 241–264

    Google Scholar 

  • Newport PJ, Nedwell DB (1988) The mechanisms of inhibition of Desulfovibrio and Desulfotomaculum species by selenate and molybdate. Appl Microbiol 65:419–423. doi:10.1111/j.1365-2672.1988.tb01911.x

    Article  CAS  Google Scholar 

  • Peck HD Jr (1959) The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc Natl Acad Sci USA 45:701–708. doi:10.1073/pnas.45.5.701

    Article  PubMed  CAS  Google Scholar 

  • Peck HD Jr (1961) The role of adenosine-5′-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans. J Biol Chem 237:198–203

    Google Scholar 

  • Postgate JR, Kent HM (1985) Diazotrophy within Desulfovibrio. J Gen Microbiol 131:2119–2122

    Google Scholar 

  • Ranade DR, Dighe AS, Bhirangi SS, Panhalkar VS, Yeole TY (1999) Evaluation of the use of sodium molybdate to inhibit sulphite reduction during anaerobic digestion of distillery waste. Bioresour Technol 68:287–291. doi:10.1016/S0960-8524(98)00149-7

    Article  CAS  Google Scholar 

  • Rebelo J, Maciera S, Dias JM, Huber R, Ascenso CS, Rusnak F, Moura JJG, Moura I, Romao MJ (2000) Gene sequence and crystal structure of the aldehyde oxidoreductase from Desulfovibrio desulfuricans ATCC 27774. J Mol Biol 297:135–146. doi:10.1006/jmbi.2000.3552

    Article  PubMed  CAS  Google Scholar 

  • Shukor MY, Habib SHM, Rahman MFA, Jirangon H, Abdullah MPA, Shamaan NA, Syed MA (2008) Hexavalent molybdenum reduction to molybdenum blue by S. marcescens strain Dr Y6. Appl Biochem Biotechnol 149:33–43. doi:10.1007/s12010-008-8137-z

    Article  PubMed  CAS  Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenate and selenide to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol 14:329–336. doi:10.1007/BF01569947

    Article  CAS  Google Scholar 

  • Tucker MD, Barton LL, Thomson BM (1997) Reduction and immobilization of molybdate by Desulfovibrio desulfuricans. J Environ Qual 26:1146–1152

    Article  CAS  Google Scholar 

  • Tucker MD, Baton LL, Thomson BM (1998) Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels. J Ind Microbiol Biotechnol 20:13–19. doi:10.1038/sj.jim.2900472

    Article  PubMed  CAS  Google Scholar 

  • Voordouw G (2002) Carbon Monoxide Cycling by Desulfovibrio vulgaris Hildenborough. J Bacteriol 184:5903–5911. doi:10.1128/JB.184.21.5903-5911.2002

    Article  PubMed  CAS  Google Scholar 

  • Williams RJP, Frausto da Silva JJR (2002) The involvement of molybdenum in life. Biochem Biophys Res Commun 292:293–299. doi:10.1006/bbrc.2002.6518

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from DOE-WERC, MARC and IMSD grants from National Institute of Health, and NASA Astrobiology Institute (N07-5489). Support also was provided by Delaware EPSCoR through the Delaware Biotechnology Institute with funds from the National Science Foundation Grant EPS-0447610 and the State of Delaware. Genome analysis was from the Institute for Genomic Research Comprehensive Microbial Database at www.tigr.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry L. Barton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, K.C., Woodards, N.A., Xu, H. et al. Reduction of molybdate by sulfate-reducing bacteria. Biometals 22, 131–139 (2009). https://doi.org/10.1007/s10534-008-9198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-008-9198-8

Keywords

Navigation