Skip to main content

Advertisement

Log in

Effect of FeSO4 treatment on glucose metabolism in diabetic rats

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Iron, the prosthetic group of haemoglobin, was found to lower serum glucose levels of diabetic rats. Its regulative mechanism and effects on enzymatic activities of glucose metabolism are still unknown. In this study, the correlation between iron supply and enzymatic activities of glucose metabolism and respiratory chain were evaluated in liver and kidney tissues of alloxan induced-diabetic rats. After FeSO4 and metformin administration, serum samples were collected for serum glucose and fructosamine level measurements. Kidney and liver tissues were excised at the end of the study for assaying enzymatic activities of isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADH-dehydrogenase and cytochrome-c-oxidase. Results showed significantly decreased serum glucose and fructosamine levels in treatment groups and enhanced enzymatic activities of several proteins as compared with the diabetic control group. Therefore, these data suggested that FeSO4 administration could increase the supply of oxygen, enhance enzymatic activities of glucose metabolism and the respiratory chain, accelerate glucose metabolism and consequently decrease serum glucose levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson RA (1997) Nutritional factors influencing the glucose/insulin system: chromium. J Am Coll Nutr 16:404–410

    PubMed  CAS  Google Scholar 

  • Bailey CJ, Turner RC (1996) Metformin. N Engl J Med 334(9):574–579. doi:10.1056/NEJM199602293340906

    Article  PubMed  CAS  Google Scholar 

  • Becker DJ, Reul B, Ozcelikay AT et al (1996) Oral selenate improves glucose homeostasis and partly reverses abnormal expression of liver glycolytic and gluconeogenic enzymes in diabetic rats. Diabetologia 39(1):3–11. doi:10.1007/BF00400407

    Article  PubMed  CAS  Google Scholar 

  • Brown IR, McBain AM, Chalmers J et al (1999) Sex difference in the relationship of calcium and magnesium excretion to glycaemic control in type-1 diabetes mellitus. Clin Chim Acta 283(1–2):119–128. doi:10.1016/S0009-8981(99)00040-6

    Article  PubMed  CAS  Google Scholar 

  • Christiansen MP, Linfoot PA, Neese RA et al (1997) Metformin effects upon post absorptive intra hepatic carbohydrate fluxes. Diabetes 46(Suppl1):244A. doi:10.2337/diabetes.46.2.244

    Google Scholar 

  • Christophe EM, Christel M, Ivo H et al (2000) Soluble transferrin receptor level: a new marker of iron deficiency anemia, a common manifestation of gastric autoimmunity in type 1 diabetes. Diabetes Care 23(9):1384–1388. doi:10.2337/diacare.23.9.1384

    Article  Google Scholar 

  • Cui M, Sun JM, Sun HW (2007) Analysis of iron, zinc, magnesium in whole serum of the II diabetes mellitus. J Hebei University (Natural Sci. Ed.) 27(2):179–183

    CAS  Google Scholar 

  • Cunningham JJ, Fu A, Mearkle PL, Brown RG (1994) Hyperzincurea in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high dose zinc supplementation. Metabolism 43(12):1558–1562. doi:10.1016/0026-0495(94)90016-7

    Article  PubMed  CAS  Google Scholar 

  • Cusi K, DeFronzo RA (1998) Metformin: a review of its metabolic effects. Diabetes Res 6(1):98–131

    Google Scholar 

  • Cusi K, Consoli A, DeFronzo RA (1996) Metabolic effect of metformin on glucose and lactate metebolism in non-insulin dependent diabetes mellitus. J Clin Endocrinol Metab 81(11):4059–4067. doi:10.1210/jc.81.11.4059

    Article  PubMed  CAS  Google Scholar 

  • Duncan DB (1957) Multiple range tests for correlated and heteroscedastic means. Biometrics 13:164–176. doi:10.2307/2527799

    Article  Google Scholar 

  • Facchini FS, Saylor KL (2003) A low-iron-available, polyphenol-enriched, carbohydrate-restricted diet to slow progression of diabetic nephropathy. Diabetes 52(5):1204–1209. doi:10.2337/diabetes.52.5.1204

    Article  PubMed  CAS  Google Scholar 

  • Gurson CT, Saner G (1971) Effect of chromium on glucose utilization in marasmic protein-calorie malnutrition. Am J Clin Nutr 24(11):1313–1319

    PubMed  CAS  Google Scholar 

  • Howard RL, Buddington B, Alfrey AC (1991) Urinary albumin, transferrin and iron excretion in diabetic patients. Kidney Int 40(5):923–926. doi:10.1038/ki.1991.295

    Article  PubMed  CAS  Google Scholar 

  • Jansson LT, Perkkio MV, Willis WT et al (1985) Red cell superoxide dismutase is increased in iron deficiency anemia. Acta Haematol 74(4):218–221

    Article  PubMed  CAS  Google Scholar 

  • Jatoba CA, de Rezende AA, de Paiva Rodrigues SJ et al (2008) Liver iron overload induced by tamoxifen in diabetic and non-diabetic female Wistar rats. Biometals 21(2):171–178

    Article  PubMed  CAS  Google Scholar 

  • Jiang R, Manson JE, Meigs JB et al (2004) Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. J Am Med Assoc 291(6):711–717. doi:10.1001/jama.291.6.711

    Article  CAS  Google Scholar 

  • Johnson D, Lordy H (1967) Isolation of liver and kidney mitochondria. Methods Enzymol 10(1):94–96

    Article  CAS  Google Scholar 

  • Kimura K (1996) Role of essential trace elements in the disturbance of carbohydrate metabolism. Nippon Rinsho 54(1):79–84

    PubMed  CAS  Google Scholar 

  • King J (1965) The hydrolases—acid and alkaline phosphatase. In: Van D (ed) Practical clinical enzymology. Nortstand Company Limited, London, pp 191–208

    Google Scholar 

  • Knutson MD, Walter PB, Ames BN et al (2000) Both iron deficiency and daily iron supplements increase lipid peroxidation in rats. J Nutr 130(5):621–628

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  • Malhotra A, Sanghi V (1997) Regulation of contractile proteins in diabetes. Cardiovasc Res 34(1):34–40. doi:10.1016/S0008-6363(97)00059-X

    Article  PubMed  CAS  Google Scholar 

  • Masini A, Salvioli G, Cremonesi P et al (1994) Dietary iron deficiency in the rat. I. Abnormalities in energy metabolism of the hepatic tissue. Biochim Biophys Acta 1188(1–2):46–52. doi:10.1016/0005-2728(94)90020-5

    PubMed  CAS  Google Scholar 

  • Matthaei S, Hamann A, Klein HH et al (1991) Association of Metformin’s effect to increase insulin-stimulated glucose transport with potentiation of insulin-induced translocation of glucose transporters from intracellular pool to plasma membrane in rat adipocytes. Diabetes 40(7):850–857. doi:10.2337/diabetes.40.7.850

    Article  PubMed  CAS  Google Scholar 

  • Mertz M (1969) Chromium occurrence and function in biological systems. Physiol Rev 49(2):163–169

    PubMed  CAS  Google Scholar 

  • Mertz W, Toepfer EW, Roginski EE (1974) Present knowledge of the role of chromium. Fed Proc 33(11):2275–2280

    PubMed  CAS  Google Scholar 

  • Minakami S, Ringer RL, Singer TJP (1962) Studies on respiratory chainlinked dihydrodiphosphopyridine nucleotide dehydrogenase. J Biol Chem 237(2):569–576

    PubMed  CAS  Google Scholar 

  • Nankivell BJ, Tay YC, Boadle RA et al (1994) Lysosomal iron accumulation in diabetic nephropathy. Ren Fail 16(3):367–381. doi:10.3109/08860229409044877

    Article  PubMed  CAS  Google Scholar 

  • Nomura Y, Okamoto S, Sakamoto M et al (2005) Effect of cobalt on the liver glycogen content in the streptozotocin-induced diabetic rats. Mol Cell Biochem 277(1–2):127–130. doi:10.1007/s11010-005-5777-y

    Article  PubMed  CAS  Google Scholar 

  • Peter AM (2000) Bioenergentics and the metabolism of carbohydrates and lipids. In: Robert KM, Daryl KG, Victor WR (eds) Harper’s biochemistry, 25th s. Science publishing company, Beijing, China, pp 182–208

    Google Scholar 

  • Pierce G, Dhalla N (1985) Heart mitochondrial function in chronic experimental diabetes in rats. Can J Cardiol 1(1):48–54

    PubMed  CAS  Google Scholar 

  • Qian P, Guo J, Liu C et al (2003) Effect of iron on peroxidation and non-enzymatic glycation in diabetic rats. Wei Sheng Yan Jiu 32(5):446–448

    PubMed  CAS  Google Scholar 

  • Scott DA, Fischer AM (1938) The insulin and zinc content of normal and diabetic pancreas. J Clin Invest 17(6):725–728. doi:10.1172/JCI101000

    Article  PubMed  CAS  Google Scholar 

  • Stanley W, Lopaschuk G, McCormack J (1997) Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res 34(1):25–33. doi:10.1016/S0008-6363(97)00047-3

    Article  PubMed  CAS  Google Scholar 

  • Stumvoll M, Nurjhan N, Periello G et al (1995) Metabolic effects of metformin in non-insulin dependent diabetes mellitus. N Engl J Med 333(9):550–554. doi:10.1056/NEJM199508313330903

    Article  PubMed  CAS  Google Scholar 

  • Underwood EJ, Mertz W (1986) Trace elements in human and animal nutrition, vol 1. Academic Press, New York, p 255

    Google Scholar 

  • Wharton C, Tzagoloff A (1967) Cytochrome oxidase from beef heart mitochondria. Methods Enzymol 10(2):245–250

    Article  CAS  Google Scholar 

  • Xu YJ, Wu XQ, Liu W et al (2002) A convenient assay of glycoserum by nitroblue tetrazolium with iodoacetamide. Clin Chim Acta 325(1–2):127–131. doi:10.1016/S0009-8981(02)00277-2

    Article  PubMed  CAS  Google Scholar 

  • Zhou XJ, Laszik Z, Wang XQ et al (2000) Association of renal injury with increased oxygen free radical activity and altered nitric oxide metabolism in chronic experimental hemosiderosis. Lab Invest 80(12):1905–1914. doi:10.1038/labinvest.3780200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by by a grant from National Science Fund for Creative Research Groups (Grant No.40721002), a grant from Research Foundation for Advanced Talents of Jiangsu University (1821360005) and Anhui biotechnological technology company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Lian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Lian, B. & Cui, F. Effect of FeSO4 treatment on glucose metabolism in diabetic rats. Biometals 21, 685–691 (2008). https://doi.org/10.1007/s10534-008-9153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-008-9153-8

Keywords

Navigation