Skip to main content
Log in

Tandem heterocyclization domains in a nonribosomal peptide synthetase essential for siderophore biosynthesis in Vibrio anguillarum

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Anguibactin, the siderophore produced by Vibrio anguillarum 775, is synthesized via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes required for anguibactin biosynthesis are harbored by the pJM1 plasmid. Complete sequencing of this plasmid identified an orf encoding a 108 kDa predicted protein, AngN. In this work we show that AngN is essential for anguibactin biosynthesis and possesses two domains with homology to cyclization (Cy) domains of NRPSs. Substitution by alanine of the aspartic acid residues within a conserved motif of either Cy1 or Cy2 domain demonstrated the importance of these two domains in AngN function during siderophore biosynthesis. Site-directed mutations in both domains (D133A/D575A and D138A/D580A) resulted in anguibactin-deficient phenotypes while mutations in each domain did not abolish siderophore production but caused a reduction in the amounts produced. The mutations D133A/D575A and D138A/D580A also resulted as expected in a dramatic attenuation of the virulence of V. anguillarum 775 highlighting the importance of this gene for the biosynthesis of anguibactin within the vertebrate host. Regulation of the angN gene follows the patterns observed at the iron transport-biosynthesis promoter with angN transcription repressed in the presence of iron and enhanced by AngR and trans-acting factor (TAF) under iron limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Actis LA, Fish W, Crosa JH et al (1986) Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775(pJM1). J Bacteriol 167:57–65

    PubMed  CAS  Google Scholar 

  • Actis LA, Tolmasky ME, Farrell DH et al (1988) Genetic and molecular characterization of essential components of the Vibrio anguillarum plasmid-mediated iron-transport system. J Biol Chem 263:2853–2860

    PubMed  CAS  Google Scholar 

  • Actis LA, Tolmasky ME, Crosa JH (1999) Vibriosis. In: Woo P, Bruno D (eds) Fish diseases and disorders Viral, bacterials and fungal infections. Cab International Publishing, Wallingford, pp 523–557

    Google Scholar 

  • Alice AF, Lopez CS, Crosa JH (2005) Plasmid- and chromosome-encoded redundant and specific functions are involved in biosynthesis of the siderophore anguibactin in Vibrio anguillarum 775: a case of chance and necessity? J Bacteriol 187:2209–2214. doi:10.1128/JB.187.6.2209-2214.2005

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523. doi:10.1093/nar/7.6.1513

    Article  PubMed  CAS  Google Scholar 

  • Bolivar F (1978) Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique Eco RI sites for selection of Eco RI generated recombinant DNA molecules. Gene 4:121–136. doi:10.1016/0378-1119(78)90025-2

    Article  PubMed  CAS  Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472. doi:10.1016/0022-2836(69)90288-5

    Article  PubMed  CAS  Google Scholar 

  • Braun V, Killmann H (1999) Bacterial solutions to the iron-supply problem. Trends Biochem Sci 24:104–109. doi:10.1016/S0968-0004(99)01359-6

    Article  PubMed  CAS  Google Scholar 

  • Butterton JR, Choi MH, Watnick PI et al (2000) Vibrio cholerae VibF is required for vibriobactin synthesis and is a member of the family of nonribosomal peptide synthetases. J Bacteriol 182:1731–1738. doi:10.1128/JB.182.6.1731-1738.2000

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Wertheimer AM, Tolmasky ME et al (1996) The AngR protein and the siderophore anguibactin positively regulate the expression of iron-transport genes in Vibrio anguillarum. Mol Microbiol 22:127–134. doi:10.1111/j.1365-2958.1996.tb02662.x

    Article  PubMed  CAS  Google Scholar 

  • Crosa JH, Hodges LL, Schiewe MH (1980) Curing of a plasmid is correlated with an attenuation of virulence in the marine fish pathogen Vibrio anguillarum. Infect Immun 27:897–902

    PubMed  CAS  Google Scholar 

  • Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249. doi:10.1128/MMBR.66.2.223-249.2002

    Article  PubMed  CAS  Google Scholar 

  • Di Lorenzo M, Stork M, Tolmasky ME et al (2003) Complete sequence of virulence plasmid pJM1 from the marine fish pathogen Vibrio anguillarum strain 775. J Bacteriol 185:5822–5830. doi:10.1128/JB.185.19.5822-5830.2003

    Article  PubMed  CAS  Google Scholar 

  • Di Lorenzo M, Poppelaars S, Stork M et al (2004) A nonribosomal peptide synthetase with a novel domain organization is essential for siderophore biosynthesis in Vibrio anguillarum. J Bacteriol 186:7327–7336. doi:10.1128/JB.186.21.7327-7336.2004

    Article  PubMed  CAS  Google Scholar 

  • Duerfahrt T, Eppelmann K, Muller R et al (2004) Rational design of a bimodular model system for the investigation of heterocyclization in nonribosomal peptide biosynthesis. Chem Biol 11:261–271. doi:10.1016/S1074-5521(04)00024-9

    Article  PubMed  CAS  Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652. doi:10.1073/pnas.76.4.1648

    Article  PubMed  CAS  Google Scholar 

  • Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides1. Annu Rev Microbiol 58:453–488. doi:10.1146/annurev.micro.58.030603.123615

    Article  PubMed  CAS  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496. doi:10.1021/cr0503097

    Article  PubMed  CAS  Google Scholar 

  • Guilvout I, Mercereau-Puijalon O, Bonnefoy S et al (1993) High-molecular-weight protein 2 of Yersinia enterocolitica is homologous to AngR of Vibrio anguillarum and belongs to a family of proteins involved in nonribosomal peptide synthesis. J Bacteriol 175:5488–5504

    PubMed  CAS  Google Scholar 

  • Hirsch PR, Beringer JE (1984) A physical map of pPH1JI and pJB4JI. Plasmid 12:139–141. doi:10.1016/0147-619X(84)90059-3

    Article  PubMed  CAS  Google Scholar 

  • Keating TA, Walsh CT (1999) Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr Opin Chem Biol 3:598–606. doi:10.1016/S1367-5931(99)00015-0

    Article  PubMed  CAS  Google Scholar 

  • Linn T, St Pierre R (1990) Improved vector system for constructing transcriptional fusions that ensures independent translation of lacZ. J Bacteriol 172:1077–1084

    PubMed  CAS  Google Scholar 

  • Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674. doi:10.1021/cr960029e

    Article  PubMed  CAS  Google Scholar 

  • Marshall CG, Burkart MD, Keating TA et al (2001) Heterocycle formation in vibriobactin biosynthesis: alternative substrate utilization and identification of a condensed intermediate. Biochemistry 40:10655–10663. doi:10.1021/bi010937s

    Article  PubMed  CAS  Google Scholar 

  • Marshall CG, Hillson NJ, Walsh CT (2002) Catalytic mapping of the vibriobactin biosynthetic enzyme VibF. Biochemistry 41:244–250. doi:10.1021/bi011852u

    Article  PubMed  CAS  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451. doi:10.1128/MMBR.00012-07

    Article  PubMed  CAS  Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor, NY

    Google Scholar 

  • Miller DA, Walsh CT (2001) Yersiniabactin synthetase: probing the recognition of carrier protein domains by the catalytic heterocyclization domains, Cy1 and Cy2, in the chain-initiating HWMP2 subunit. Biochemistry 40:5313–5321. doi:10.1021/bi002905v

    Article  PubMed  CAS  Google Scholar 

  • Naka H, Lopez CS, Crosa JH (2008) Reactivation of the vanchrobactin siderophore system of Vibrio anguillarum by removal of a chromosomal insertion sequence originated in plasmid pJM1 encoding the anguibactin siderophore system. Environ Microbiol 10:265–277

    PubMed  CAS  Google Scholar 

  • Quadri LE, Keating TA, Patel HM et al (1999) Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: In vitro reconstitution of aryl-4, 2-bisthiazoline synthetase activity from PchD, PchE, and PchF. Biochemistry 38:14941–14954. doi:10.1021/bi991787c

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C (2007) Iron metabolism and infection. Food Nutr Bull 28:S515–S523

    PubMed  Google Scholar 

  • Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 3rd. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Tolmasky ME, Actis LA, Crosa JH (1988) Genetic analysis of the iron uptake region of the Vibrio anguillarum plasmid pJM1: molecular cloning of genetic determinants encoding a novel trans activator of siderophore biosynthesis. J Bacteriol 170:1913–1919

    PubMed  CAS  Google Scholar 

  • von Dohren H, Dieckmann R, Pavela-Vrancic M (1999) The nonribosomal code. Chem Biol 6:R273–R279. doi:10.1016/S1074-5521(00)80014-9

    Article  Google Scholar 

  • Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303:1805–1810. doi:10.1126/science.1094318

    Article  PubMed  CAS  Google Scholar 

  • Walsh CT, Chen H, Keating TA et al (2001) Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr Opin Chem Biol 5:525–534. doi:10.1016/S1367-5931(00)00235-0

    Article  PubMed  CAS  Google Scholar 

  • Walter MA, Potter SA, Crosa JH (1983) Iron uptake system mediated by Vibrio anguillarum plasmid pJM1. J Bacteriol 156:880–887

    PubMed  CAS  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647. doi:10.1146/annurev.micro.58.030603.123811

    Article  PubMed  CAS  Google Scholar 

  • Welch TJ, Chai S, Crosa JH (2000) The overlapping angB and angG genes are encoded within the trans-acting factor region of the virulence plasmid in Vibrio anguillarum: essential role in siderophore biosynthesis. J Bacteriol 182:6762–6773. doi:10.1128/JB.182.23.6762-6773.2000

    Article  PubMed  CAS  Google Scholar 

  • Wertheimer AM, Verweij W, Chen Q et al (1999) Characterization of the angR gene of Vibrio anguillarum: essential role in virulence. Infect Immun 67:6496–6509

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by Grants from the National Institute of Health, AI19018 and GM64600, to J.H.C. We are grateful to Christopher T. Walsh for his insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Di Lorenzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Lorenzo, M., Stork, M., Naka, H. et al. Tandem heterocyclization domains in a nonribosomal peptide synthetase essential for siderophore biosynthesis in Vibrio anguillarum . Biometals 21, 635–648 (2008). https://doi.org/10.1007/s10534-008-9149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-008-9149-4

Keywords

Navigation