Skip to main content

Advertisement

Log in

Zinc transporter mRNA expression in the RWPE-1 human prostate epithelial cell line

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The human prostate gland undergoes a prominent alteration in Zn+2 homeostasis during the development of prostate cancer. The goal of the present study was to determine if the immortalized human prostate cell line (RWPE-1) could serve as a model system to study the role of zinc in prostate cancer. The study examined the expression of mRNA for 19 members of the zinc transporter gene family in normal prostate tissue, the prostate RWPE-1 cell line, and the LNCaP, DU−145 and PC−3 prostate cancer cell lines. The study demonstrated that the expression of the 19 zinc transporters was similar between the RWPE-1 cell line and the in situ prostate gland. Of the 19 zinc transporters, only 5 had levels that were different between the RWPE-1 cells and the tissue samples; all five being increased (ZnT-6, Zip-1, Zip-3A, Zip-10, and Zip-14). The response of the 19 transporters was also determined when the cell lines were exposed to 75 μM Zn+2 for 24 h. It was shown for the RWPE-1 cells that only 5 transporters responded to Zn+2 with mRNA for ZnT-1 and ZnT-2 being increased while mRNA for ZnT-7, Zip-7 and Zip-10 transporters were decreased. It was shown for the LNCaP, DU-145 and PC-3 cells that Zn+2 had no effect on the mRNA levels of all 19 transporters except for an induction of ZnT-1 in PC-3 cells. Overall, the study suggests that the RWPE-1 cells could be a valuable model for the study of the zinc transporter gene family in the prostate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achanzar WE, Brambila EM, Diwan BA, Webber MM, Waalkes MP (2002) Inorganic arsenite-induced malignant transformation of human prostate epithelial cells. J Natl Cancer Inst 94:1888–1891

    PubMed  CAS  Google Scholar 

  • Achanzar WE, Diwan BA, Liu J, Quader ST, Webber MM, Waalkes MP (2001) Cadmium-induced malignant transformation of human prostate epithelial cells. Cancer Res 61:455–458

    PubMed  CAS  Google Scholar 

  • Albrecht A, Singh RK, Somji S, Sens MA, Sens DA, Garrett SH (2007) Basal and metal-induced expression of metallothionein isoform 1 and 2 genes in the RWPE-1 human prostate epithelial cell line. J Appl Toxicol, (in press). doi:10.1002/jat.1277

  • Aydemir TB, Blanchard RK, Cousins RJ (2006) Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations. Proc Natl Acad Sci USA 103:1699–1704

    Article  PubMed  CAS  Google Scholar 

  • Beck FWJ, Prasad AS, Butler CE, Sakr WA, Kucuk O, Sarkar FH (2004) Differential expression of hZnT-4 in human prostate tissues. The Prostate 58:374–381

    Article  PubMed  CAS  Google Scholar 

  • Bello D, Webber MM, Kleinman HK, Wartinger DD, Rhim JS (1997) Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18:225–1231

    Article  Google Scholar 

  • Benbrahim-Tallaa L, Waterland RA, Styblo M, Achanzar WE, Webber MM, Waalkes MP (2005) Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: aberrant genomic DNA methylation and K-ras oncogene activation. Toxicol Appl Pharmacol 206:288–298

    Article  PubMed  CAS  Google Scholar 

  • Benbrahim-Tallaa L, Webber MM, Waalkes MP (2005) Acquisition of androgen independence by human prostate epithelial cells during arsenic-induced malignant transformation. Environ Health Perspect 113:1134–1139

    Article  PubMed  CAS  Google Scholar 

  • Chowanadisai W, Lonnerdal B, Kelleher SL (2006) Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem 281:39699–39707

    Article  PubMed  CAS  Google Scholar 

  • Costello LC, Liu Y, Franklin RB, Kennedy MC (1997) Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem 272:28875–28881

    Article  PubMed  CAS  Google Scholar 

  • Costello LC, Feng P, Milon B, Tan M, Franklin RB (2004) Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis 7:111–117

    Article  PubMed  CAS  Google Scholar 

  • Dalton TP, He L, Wang B, Miller ML, Jin L, Stringer KF, Chang X, Baxter CS, Nebert DW (2005) Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis. Proc Natl Acad Sci USA 102:3401–3406

    Article  PubMed  CAS  Google Scholar 

  • Devergnas S, Chimienti F, Naud N, Pennequin A, Coquerel Y, Chantegrel J, Favier A, Seve M (2004) Differential regulation of zinc efflux transporters ZnT-1, ZnT-5 and ZnT-7 gene expression by zinc levels: a real-time RT-PCR study. Biochem Pharmacol 68:699–709

    Article  PubMed  CAS  Google Scholar 

  • Dufner-Beattie J, Huang ZL, Geiser J, Xu W, Andrews GK (2006) Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis 44:239–251

    Article  PubMed  CAS  Google Scholar 

  • Dufner-Beattie J, Huang ZL, Geiser J, Xu W, Andrews GK (2005) Generation and characterization of mice lacking the zinc uptake transporter ZIP3. Mol Cell Biol 25:5607–5615

    Article  PubMed  CAS  Google Scholar 

  • Eide D (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722

    Article  PubMed  CAS  Google Scholar 

  • Franklin RB, Ma J, Zou J, Guan Z, Kukoyi BI, Feng P, Costello LC (2003) Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorg Biochem 96:435–442

    Article  PubMed  CAS  Google Scholar 

  • Franklin RB, Feng P, Milon B, Desouki MM, Singh KK, Kajdacsy-Balla A, Bagasra O, Costello LC (2005) hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer 4:32

    Article  PubMed  CAS  Google Scholar 

  • Garrett SH, Sens MA, Shukla D, Nestor S, Somji S, Todd JH, Sens DA (1999) Metallothionein isoform 3 expression in the human prostate and cancer-derived cell lines. Prostate 41:196–202

    Article  PubMed  CAS  Google Scholar 

  • Habib FK, Mason MK, Smith PH, Stitch SR (1979) Cancer of the prostate: early diagnosis by zinc and hormone analysis? Br J Cancer 39:700–704

    PubMed  CAS  Google Scholar 

  • Hasumi M, Suzuki K, Matsui H, Koike H, Ito K, Yamanaka H (2003) Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett 200:187–195

    Article  PubMed  CAS  Google Scholar 

  • Helston RM, Phillips SR, McKay JA, Jackson KA, Mathers JC, Ford D (2007) Zinc transporters in the mouse placenta show a coordinated regulatory response to changes in dietary zinc intake. Placenta 28:437–444

    Article  PubMed  CAS  Google Scholar 

  • Henshall SM, Afar DE, Rasiah KK, Horvath LG, Gish K, Caras I, Ramakrishnan V, Wong M, Jeffry U, Kench JG, Quinn DI, Turner JJ, Delprado W, Lee CS, Golovsky D, Brenner PC, O’Neill GF, Kooner R, Stricker PD, Grygiel JJ, Mack DH , Sutherland RL (2003) Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer. Oncogene 22:6005–6012

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Kirschke CP, Zhang Y, Yu YY (2005) The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem 280:15456–15463

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Gitschier J (1997) A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat. Genet 17:292–297

    Article  PubMed  CAS  Google Scholar 

  • Iguchi K, Otsuka T, Usui S, Ishii K, Onishi T, Sugimura Y, Hirano K (2004) Zinc and metallothionein levels and expression of zinc transporters in androgen-independent subline of LNCaP cells. J Androl 25:154–161

    PubMed  CAS  Google Scholar 

  • Iguchi K, Usui S, Inoue T, Sugimura Y, Tatematsu M, Hirano K (2002) High-level expression of zinc transporter-2 in the rat lateral and dorsal prostate. J Androl 23:819–824

    PubMed  CAS  Google Scholar 

  • Jackson KA, Helston RM, McKay JA, O’Neill ED, Mathers JC, Ford D (2007) Splice variants of the human zinc transporter ZnT5 (SLC30A5) are differentially localized and regulated by zinc through transcription and mRNA stability. J Biol Chem 282:10423–10431

    Article  PubMed  CAS  Google Scholar 

  • Kaler P, Prasad R (2007) Molecular cloning and functional characterization of novel zinc transporter rZip10 (Slc39a10) involved in zinc uptake across rat renal brush-border membrane. Am J Physiol Renal Physiol 292:F217–229

    Article  PubMed  CAS  Google Scholar 

  • Kasper G, Weiser AA, Rump A, Sparbier K, Dahl E, Hartmann A, Wild P, Schwidetzky U, Castanos-Velez E, Lehmann K (2005) Expression levels of the putative zinc transporter LIV-1 are associated with a better outcome of breast cancer patients. Int J Cancer 117:961–973

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh JP (1983) Zinc binding properties of human prostatic tissue, prostatic secretion and seminal fluid. J Reprod Fertil 68:359–363

    Article  PubMed  CAS  Google Scholar 

  • Kirschke CP, Huang L (2003) ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J Biol Chem 278:4096–4102

    Article  PubMed  CAS  Google Scholar 

  • Langmade SJ, Ravindra R, Daniels PJ, Andrews GK (2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem 275:34803–34809

    Article  PubMed  CAS  Google Scholar 

  • Larue JP, Morfin RF (1984a) Effects of steroid androgens on the uptake and distribution of zinc in slices from human prostates. Endocrine Res 10:183–192

    CAS  Google Scholar 

  • Larue JP, Morfin RF (1984b) Identification of a low molecular weight ligand for zinc in the human hyperplastic prostate. Endocrine Res 10:171–181

    Article  CAS  Google Scholar 

  • Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172

    Article  PubMed  CAS  Google Scholar 

  • Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ (2006) Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA 103:13612–13617

    Article  PubMed  CAS  Google Scholar 

  • Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, Ganz T, Cousins RJ (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci USA 102:6843–6848

    Article  PubMed  CAS  Google Scholar 

  • Liuzzi JP, Blanchard RK, Cousins RJ (2001) Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. J Nutr 131:46–52

    PubMed  CAS  Google Scholar 

  • Naide Y (2002) Changes in serum and prostatic zinc concentrations in rats after intraprostatic injection of zinc: Comparison of two forms of zinc delivery. Int J Urol 9:688

    Article  PubMed  Google Scholar 

  • Palmiter RD, Cole TB, Findley SD (1996) ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J 15:1784–1791

    PubMed  CAS  Google Scholar 

  • Partin A, Rodriguez R (2002) The molecular biology, endocrinology, and physiology of the prostate and seminal vesicles. In: Walsh P, Retik E, Vaughan Jr, Wein A (eds) Campbell’s urology. Saunders, New York, pp 1276

    Google Scholar 

  • Pawan K, Neeraj S, Sandeep K, Kanta Ratho R, Rajendra P (2007) Upregulation of Slc39a10 gene expression in response to thyroid hormones in intestine and kidney. Biochim Biophys Acta 1769:117–123

    PubMed  CAS  Google Scholar 

  • Taylor KM (2000) LIV-1 breast cancer protein belongs to new family of histidine-rich membrane proteins with potential to control intracellular Zn2+ homeostasis. IUBMB Life 49:249–253

    Article  PubMed  CAS  Google Scholar 

  • Taylor KM, Morgan HE, Hohson A, Hadley LJ, Nicholson RI (2003) Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. Biochem J 375:51–59

    Article  PubMed  CAS  Google Scholar 

  • Taylor KM, Morgan HE, Johnson A, Nicholson RI (2004) Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. Biochem J 377:131–139

    Article  PubMed  CAS  Google Scholar 

  • Tozlu S, Girault I, Vacher S, Vendrell J, Andrieu C, Spyratos F, Cohen P, Lidereau R, Bieche I (2006) Identification of novel genes that co-cluster with estrogen receptor alpha in breast tumor biopsy specimens, using a large-scale real-time reverse transcription-PCR approach. Endocr Relat Cancer 13:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    PubMed  CAS  Google Scholar 

  • Wang B, Schneider SN, Dragin N, Girijashanker K, Dalton TP, He L, Miller ML, Stringer KF, Soleimani M, Richardson DD, Nebert DW (2007) Enhanced cadmium-induced testicular necrosis and renal proximal tubule damage caused by gene-dose increase in a Slc39a8-transgenic mouse line. Am J Physiol Cell Physiol 292:C1523–1535

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J (2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71:66–73

    Article  PubMed  CAS  Google Scholar 

  • Webber MM, Bello D, Kleinman HK, Hoffman MP (1997) Acinar differentiation by non-malignant immortalized human prostate epithelial cells and its loss by malignant cells. Carcinogenesis 18:1225–1331

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project described was supported by grant number RO1 ES015100 from the National Institute of Environmental Health Sciences, grant number R01 CA098832 from the National Cancer Institute (NCI), and grant number P20 RR016741 from the INBRE Program of the National Center for Research Resources, NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. The project was also supported by a UND Faculty Senate Seed Grant program award to SHG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott H. Garrett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, A.L., Somji, S., Sens, M.A. et al. Zinc transporter mRNA expression in the RWPE-1 human prostate epithelial cell line. Biometals 21, 405–416 (2008). https://doi.org/10.1007/s10534-007-9129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-007-9129-0

Keywords

Navigation