Skip to main content
Log in

An investigation of hemopexin redox properties by spectroelectrochemistry: biological relevance for heme uptake

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Hemopexin (HPX) has two principal roles: it sequesters free heme in vivo for the purpose of preventing the toxic effects of this moiety, which is largely due to heme’s ability to catalyze free radical formation, and it transports heme intracellularly thus limiting its availability as an iron source for pathogens. Spectroelectrochemistry was used to determine the redox potential for heme and meso-heme (mH) when bound by HPX. At pH 7.2, the heme-HPX assembly exhibits E 1/2 values in the range 45–90 mV and the mH-HPX assembly in the range 5–55 mV, depending on environmental electrolyte identity. The E 1/2 value exhibits a 100 mV positive shift with a change in pH from 7.2 to 5.5 for mH-HPX, suggesting a single proton dependent equilibrium. The E 1/2 values for heme-HPX are more positive in the presence of NaCl than KCl indicating that Na+, as well as low pH (5.5) stabilizes ferro-heme-HPX. Furthermore, comparing KCl with K2HPO4, the chloride salt containing system has a lower potential, indicating that heme-HPX is easier to oxidize. These physical properties related to ferri-/ferro-heme reduction are both structurally and biologically relevant for heme release from HPX for transport and regulation of heme oxygenase expression. Consistent with this, when the acidification of endosomes is prevented by bafilomycin then heme oxygenase-1 induction by heme-HPX no longer occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s Minimal Essential Medium

HEPES:

4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid

H:

Heme, protoporphyrin-IX

HO-1:

Heme oxygenase-1

HPX:

Hemopexin

mH:

Meso-heme

NHE:

Normal hydrogen electrode

OTTLE:

Optically transparent thin-layer electrode

SDS:

Sodium dodecyl sulfate

References

  • Alam J, Smith A (1989) Receptor-mediated transport of heme by hemopexin regulates gene expression in mammalian cells. J Biol Chem 264:17637–17640

    PubMed  CAS  Google Scholar 

  • Alam J, Smith A (1992) Heme-hemopexin-mediated induction of metallothionein gene expression. J Biol Chem 267:16379–16384

    PubMed  CAS  Google Scholar 

  • Arnoux P, Haser R, Izadi N, Lecroisey A, Delepierre M, Wandersman C, Czjzek M (1999) The crystal structure of HasA, a hemophore secreted by Serratia marcescens. Nat Struct Biol 6:516–520

    Article  PubMed  CAS  Google Scholar 

  • Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, Fasano M (2005) Hemoglobin and heme scavenging. IUBMB Life 57:749–759

    PubMed  CAS  Google Scholar 

  • Askwith C, Kaplan J (1998) Iron and copper transport in yeast and its relevance to human disease. Trends Biochem Sci 23:135–138

    Article  PubMed  CAS  Google Scholar 

  • Beaven GH, Chen S-H, D’Albis A, Gratzer WB (1974) A spectroscopic study of the haemin-human-serum-albumin system. Eur J Biochem 41:539–546

    Article  PubMed  CAS  Google Scholar 

  • Berridge MV, Tan AS (1998) Trans-plasma membrane electron transport: a cellular assay for NADH- and NADPH-oxidase based on extracellular, superoxide-mediated reduction of the sulfonated tetrazolium salt WST-1. Protoplasma 205:74–82

    Article  CAS  Google Scholar 

  • Berridge MV, Tan AS (2000) Cell-surface NAD(P)H-oxidase: relationship to trans-plasma membrane NADH-oxidoreductase and a potential source of circulating NADH-oxidase. Antioxid Redox Signal 2:277–288

    Article  PubMed  CAS  Google Scholar 

  • Clague MJ (1998) Molecular aspects of the endocytic pathway. Biochem J 336:271–282

    PubMed  CAS  Google Scholar 

  • Conway TP, Morgan WT, Liem HH, Muller-Eberhard U (1975) Catabolism of photo-oxidized and desialylated hemopexin in the rabbit. J Biol Chem 250:3067–3073

    PubMed  CAS  Google Scholar 

  • Cox MC, Le Brun N, Thomson AJ, Smith A, Morgan WT, Moore GR (1995) MCD, EPR and NMR spectroscopic studies of rabbit hemopexin and its heme binding domain. Biochim Biophys Acta 1253:215–223

    PubMed  Google Scholar 

  • Davies DM, Smith A, Muller-Eberhard U, Morgan WT (1979) Hepatic subcellular metabolism of heme from heme-hemopexin: incorporation of iron into ferritin. Biochem Biophys Res Commun 91:1504–1511

    Article  PubMed  CAS  Google Scholar 

  • Dhungana S, Crumbliss AL (2007) Uv-visible spectroelectrochemsitry of selected iron containing proteins. In: Kaim WK, Klein A (eds) Spectroelectrochemistry. Royal Society of Chemistry, Cambridge, UK (in press)

    Google Scholar 

  • Dhungana S, Taboy CH, Zak O, Larvie M, Crumbliss AL, Aisen P (2004) Redox properties of human transferrin bound to its receptor. Biochemistry 43:205–209

    Article  PubMed  CAS  Google Scholar 

  • Eskew JD, Vanacore RM, Sung L, Morales PJ, Smith A (1999) Cellular protection mechanisms against extracellular heme. heme- hemopexin, but not free heme, activates the n-terminal c-jun kinase. J Biol Chem 274:638–648

    Article  PubMed  CAS  Google Scholar 

  • Faber HR, Groom CR, Baker HM, Morgan WT, Smith A, Baker EN (1995) 1.8 Angstrom crystal-structure of the C-terminal domain of rabbit serum hemopexin. Structure 3:551–559

    Article  PubMed  CAS  Google Scholar 

  • Genco CA, Dixon DW. Emerging strategies in microbial haem capture. Mol Microbiol 39:1–11

  • Gibney B (2007) Heme-protein database. http://heme.chem.columbia.edu/heme.php

  • Gutteridge JM, Smith A (1988) Antioxidant protection by haemopexin of haem-stimulated lipid peroxidation. Biochem J 256:861–865

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1986) Iron and free radical reactions: two aspects of antioxidant protection. Trends Biochem Sci 11:372–375

    Article  CAS  Google Scholar 

  • Hassett R, Dix DR, Eide DJ, Kosman DJ (2000) The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. Biochem J 351:477–484

    Article  PubMed  CAS  Google Scholar 

  • Hassett R, Kosman DJ (1995) Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem 270:128–134

    Article  PubMed  CAS  Google Scholar 

  • Herst PM, Tan AS, Scarlett DJ, Berridge MV (2004) Cell surface oxygen consumption by mitochondrial gene knockout cells. Biochim Biophys Acta 1656:79–87

    Article  PubMed  CAS  Google Scholar 

  • Hkal Z, Suttnar J, Vodrazka Z (1977) Redox potential of human serum haemopexin. Stud Biophys (Berlin) 63:55–58

    Google Scholar 

  • Hkal Z, Vodrazka Z, Kalousek I (1974) Transfer of heme from ferrihemoglobin and ferrihemoglobin isolated chains to hemopexin. Eur J Biochem 43:73–78

    Article  Google Scholar 

  • Izadi N, Henry Y, Haladjian J, Goldberg ME, Wandersman C, Delepierre M, Lecroisey A (1997) Purification and characterization of an extracellular heme-binding protein, HasA, involved in heme iron acquisition. Biochemistry 36:7050–7057

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer K, Sarkadi EB, Sorrentino BP, Schuetz JD (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279:24218–24225

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy PC, Du G, Fukuda Y, Sun D, Sampath J, Mercer KE, Wang J, Sosa-Pineda B, Murti GP, Schuetz JD (2006) Identification of a mammalian porphyrin transporter. Nature 443:586–589

    Article  PubMed  CAS  Google Scholar 

  • Lee K-B, Jun E, LaMar GN, Rezzano I, Pandey RK, Smith KM, Walker FA, Buttlaire DH (1991) Influence of heme vinyl- and carboxylate-protein contacts on structure and redox properties of bovine cytochrome b. J Am Chem Soc 113:3576–3583

    Article  CAS  Google Scholar 

  • Liem HH, Spector JI, Conway TP, Morgan WT, Muller-Eberhard U (1975) Effect of hemoglobin and hematin on plasma clearance of hemopexin, photo-inactivated hemopexin and albumin. Proc Soc Exp Biol Med 148:519–522

    PubMed  CAS  Google Scholar 

  • Ly JD, Lawen A (2003) Transplasma membrane electron transport: enzymes involved and biological function. Redox Rep 8:3–21

    Article  PubMed  CAS  Google Scholar 

  • McKie AT (2005) A ferrireductase fills the gap in the transferrin cycle. Nat Genet 37:1159–1160

    Article  PubMed  CAS  Google Scholar 

  • Miller YI, Smith A, Morgan WT, Shaklai N (1996) Role of hemopexin in protection of low-density lipoprotein against hemoglobin-induced oxidation. Biochemistry 35:13112–13117

    Article  PubMed  CAS  Google Scholar 

  • Morgan WT, Liem HH, Sutor RP, Muller-Eberhard U (1976) Transfer of heme from heme-albumin to hemopexin. Biochim Biophys Acta 444:435–445

    PubMed  CAS  Google Scholar 

  • Morgan WT, Muller-Eberhard U (1972) Interactions of porphyrins with rabbit hemopexin. J Biol Chem 247:7181–7187

    PubMed  CAS  Google Scholar 

  • Morgan WT, Muster P, Tatum F, Kao SM, Alam J, Smith A (1993) Identification of the histidine residues of hemopexin that coordinate with heme-iron and of a receptor-binding region. J Biol Chem 268:6256–6262

    PubMed  CAS  Google Scholar 

  • Morgan WT, Muster P, Tatum FM, McConnell J, Conway TP, Hensley P, Smith A (1988) Use of hemopexin domains and monoclonal antibodies to hemopexin to probe the molecular determinants of hemopexin-mediated heme transport. J Biol Chem 263:8220–8225

    PubMed  CAS  Google Scholar 

  • Morgan WT, Smith A (1984) Domain structure of rabbit hemopexin. Isolation and characterization of a heme-binding glycopeptide. J Biol Chem 259:12001–12006

    CAS  Google Scholar 

  • Morgan WT, Smith A (2001) Binding and transport of iron-porphyrins by hemopexin. Adv Inorg Chem 51:205–241

    Article  CAS  Google Scholar 

  • Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barkers JE, Fleming MD (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37:1264–1269

    Article  PubMed  CAS  Google Scholar 

  • Paoli M, Anderson BF, Baker HM, Morgan WT, Smith A, Baker EN (1999) Crystal structure of hemopexin reveals a novel high-affinity heme site formed between two β propeller domains. Nat Struct Biol 6:926–931

    Article  PubMed  CAS  Google Scholar 

  • Paoli M, Marles-Wright J, Smith A (2002) Structure-function relationships in heme-proteins. DNA Cell Biol 21:271–280

    Article  PubMed  CAS  Google Scholar 

  • Quigley JG, Yang Z, Worthington MT (2004) Identification of a human heme exporter that is essential for erythropoiesis. Cell 118:757–766

    Article  PubMed  CAS  Google Scholar 

  • Reid LS, Lim AR, Mauk AG (1986) Role of heme vinyl groups in cytochrome b5 electron transfer. J Am Chem Soc 108:8197–8201

    Article  CAS  Google Scholar 

  • Rish K, Swartzlander R, Sadikot T, Berridge MV, Smith A (2007) Interaction of heme and heme-hemopexin with an extracellular oxidant system used to measure cell growth-associated plasma membrane electron transport. Biochim Biophys Acta http://dx.doi9.org/10.1016/j.bbabio.2007.06.003

  • Rosell FI, Mauk MR, Mauk AG (2005) pH and metal ion-induced stability of the hemopexin-heme complex. Biochemistry 44:1872–1879

    Article  PubMed  CAS  Google Scholar 

  • Scheel O, Zdebik AA, Lourdel S, Jentsch TJ (2005) Voltage dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424–427

    Article  PubMed  CAS  Google Scholar 

  • Seery VL, Morgan WT, Muller-Eberhard U (1975) Interaction of rabbit hemopexin with rose bengal and photooxidation of the rose bengal-hemopexin complex. J Biol Chem 250:6439–6444

    PubMed  CAS  Google Scholar 

  • Shayeghi M, Latunde-Dada GO, Oakhill JS (2005) Identification of an intestinal heme transporter. Cell 122:789–801

    Article  PubMed  CAS  Google Scholar 

  • Shipulina N, Smith A, Morgan WT (2001) Effects of reduction and ligation of heme iron on the thermal stability of heme-hemopexin complexes. J Protein Chem 20:145–154

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Eskew JD, Borza CM, Pendrak M, Hunt RC (1997) Role of heme-hemopexin in human T-lymphocyte proliferation. Exp Cell Res 232:246–254

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Hunt RC (1990) Hemopexin joins transferrin as representative members of a distinct class of receptor-mediated endocytic transport systems. Eur J Cell Biol 53:234–245

    PubMed  CAS  Google Scholar 

  • Smith A, Ledford BE (1988) Expression of the haemopexin-transport system in cultured mouse hepatoma cells. Links between haemopexin and iron metabolism. Biochem J 256:941–950

    PubMed  CAS  Google Scholar 

  • Smith A, Morgan WT (1978) Transport of heme by hemopexin to the liver: evidence for receptor-mediated uptake. Biochem Biophys Res Commun 84:151–157

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Morgan WT (1979) Haem transport to the liver by haemopexin. Receptor-mediated uptake with recycling of the protein. Biochem J 182:47–54

    PubMed  CAS  Google Scholar 

  • Smith A, Morgan WT (1981) Hemopexin mediated transport of heme into isolated rat hepatocytes. J Biol Chem 256:10902–10909

    PubMed  CAS  Google Scholar 

  • Smith A, Morgan WT (1984) Hemopexin-mediated heme uptake by liver. Characterization of the interaction of heme-hemopexin with isolated rabbit liver plasma membranes. J Biol Chem 259:12049–12053

    PubMed  CAS  Google Scholar 

  • Sung L, Womack M, Shipulina N, Morales P, Smith A (2000) Cell surface events for metallothionein-1 and heme oxygenase-1 regulation by the hemopexin heme transport system. Antioxid Redox Signal 2:753–765

    Article  PubMed  CAS  Google Scholar 

  • Tabata M, Nishimoto J (2000) Equilibrium data of porphyrins and metalloporphyrins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, database of redox potentials and binding constants. Academic Press, NY, pp 221–419

    Google Scholar 

  • Taboy CH, Bonaventura C, Crumbliss AL (2002) Anaerobic oxidations of myoglobin and hemoglobin using spectroelectrochemistry. In: Sen CK, Packer L, Vol Eds, Abelson JN, Simon MI (eds-in-chief) Methods in enzymology—Redox cell biology and genetics. Academic Press, NY, pp 187–209

  • Tolosano E, Fagoonee S, Hirsch E, Berger FG, Baumann H, Silengo L, Altruda F (2002) Enhanced splenomegaly and severe liver inflammation in haptoglobin/hemopexin double-null mice after acute hemolysis. Blood 100:4201–4208

    Article  PubMed  CAS  Google Scholar 

  • Tolosano E, Hirsch E, Patrucco E, Camaschella C, Navone R, Silengo L, Altruda F (1999) Blood defective recovery and severe renal damage after acute hemolysis in hemopexin-deficient mice. Blood 94:3906–3914

    PubMed  CAS  Google Scholar 

  • Vanacore R, Eskew J, Morales P, Sung L, Smith A (2000) Role for copper in transient oxidation and nuclear translocation of MTF-1, but not of NFkB, by the hemopexin heme transport system. Antioxid Redox Signal 2:739–752

    Article  PubMed  CAS  Google Scholar 

  • Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashir Y (1991) Bafilomycin a1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266:17707–17712

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.L.C. thanks the National Science Foundation (Grants CHE 0079066 and CHE 0418006) for financial support. M.M.F. is a Duke University Toxicology Program Fellow supported by NIEHS grant T32-ES-07031-21A1. A.S. thanks NIH (Grant DK64363), the American Heart Association and the University of Missouri Research Board for financial support. The authors acknowledge the help of Ms. Rachel Lovelace and Dr. Max Paoli (University of Newcastle, UK) for the generation of the heme-hemopexin structure with PyMol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin L. Crumbliss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flaherty, M.M., Rish, K.R., Smith, A. et al. An investigation of hemopexin redox properties by spectroelectrochemistry: biological relevance for heme uptake. Biometals 21, 239–248 (2008). https://doi.org/10.1007/s10534-007-9112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-007-9112-9

Keywords

Navigation