Skip to main content
Log in

Cadmium, zinc and iron interactions in the tissues of bank vole Clethrionomys glareolus after exposure to low and high doses of cadmium chloride

  • OriginalPaper
  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

In present study, bank voles Clethrionomys glareolus were peritioneally injected with different doses of cadmium, 0, 1.5, 3.0 mg Cd/kg body mass. Animals were sacrificed on the 21st day after cadmium exposure and the liver and kidney were obtained for cadmium, zinc and iron analysis using atomic absorption spectrometry. Results showed that cadmium had accumulated in the tissues according to dosage and sex. Cadmium affected the survival and body masses of dosed females. Cadmium decreased the iron concentrations in the liver of voles, whereas zinc concentrations increased in both the kidney and liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amdur MO, Doull J, Klaassen CD. 1991 Cassarett and Doull’s Toxicology. Toronto, ON, Canada: Pergamon

  • Ballantyne B, Marrs T, Turner P. (1995) General and Applied Toxicology. Macmillan Press Ltd, Basingstoke England

    Google Scholar 

  • Bonner FW, King LJ, Parke DV. (1980) The effect of dietary cadmium on zinc, copper and iron levels in the bone of rats. Toxicol Lett 5:105–108

    Article  PubMed  CAS  Google Scholar 

  • Brzóska MM, Moniuszko-Jakoniuk J. (2001) Interactions between cadmium and zinc in the organism. Food Chem Toxicol 39:967–980

    Article  PubMed  Google Scholar 

  • Blazka ME, Shaikh ZA. (1992) Cadmium and mercury accumulation in rat hepatocytes. Interactions with other metal ions. Toxicol Appl Pharmacol 113:118–125

    Article  PubMed  CAS  Google Scholar 

  • Casalino E, Sblano C, Landriscina C (1997) Enzyme activity alteration by cadmium administration to rats: The possibility of iron involvement in lipid peroxidation. Arch Biochem Biophys 346(2):171–179

    Article  PubMed  CAS  Google Scholar 

  • Chan HM, Cherian MG. (1992) Protective roles of metallothionein and glutathione in hepatotoxicity of cadmium. Toxicology 72: 281–290

    Article  PubMed  CAS  Google Scholar 

  • Chmielnicka J, Cherian MG. (1986) Environmental exposure to cadmium and factors affecting trace-element metabolism and metal toxicity. (Review). Biol Trace Element Res 10:243–262

    CAS  Google Scholar 

  • Eisler R. 1985 Cadmium hazards to fish, wildlife, and invertebrates, a synoptic review. U.S. Fish Wildl Serv Biol Rep 85 (1.2)

  • Eisler R. 1993 Zinc hazards to fish, wildlife, and invertebrates, a synoptic review. U.S. Fish Wildl Serv Biol Rep 10

  • Eisler R (1997) Zinc hazards to plants and animals with emphasis on fishery and wildlife resources. In: Cheremisinoff PN (eds) Ecological Issues and Environmental Impact Assessment. Advances in Environmental Control Technology Series. Gulf Publishing Company Houston, Texas, pp 443–537

    Google Scholar 

  • Floriańczyk B. (1995) Toxic and carcinogenic properties of cadmium. Medic News 64: 737–745

    Google Scholar 

  • Friberg L, Piscator M, Nordberg GF, Kjellström T (1974) Cadmium in the environment 2nd edition. CRC Press Inc, Clevelend, Ohio

    Google Scholar 

  • Friberg L, Nordberg GF, Vouk VB 1986. Handbook on the Toxicology of Metals. 2nd ed. Amsterdam, New York, Oxford: Elsevier

  • Hamilton L, Valberg LS. (1974) Relationship between cadmium and iron absorption. Am J Physiol 227: 1033–1037

    PubMed  CAS  Google Scholar 

  • Jonah MM, Bhattacharyya MH. (1989) Early changes in the tissue distribution of cadmium after oral but not intravenous cadmium exposure. Toxicology 58: 325–338

    Article  PubMed  CAS  Google Scholar 

  • Karmakar R, Bhattacharya R, Chatterjee M. (2000) Biochemical, haematological and histopathological study in relation to time-related cadmium-induced hepatotoxicity in mice. BioMetals 13:231–239

    Article  PubMed  CAS  Google Scholar 

  • Luckey TD, Venugopal B. (1977) Metal Toxicity in Mammals. Physiologic and Chemical Basis for Metal Toxicity Part 1. Plenum Press, New York and London

    Google Scholar 

  • Nordberg GF. (1972) Cadmium metabolism and toxicity. Environ Physiol Biochem 2,7–36

    CAS  Google Scholar 

  • Peraza MA, Ayala-Fierro F, Barber DS, Casarez E, Rael LT. (1998) Effects of micronutrients on metal toxicity. Environ Health Perspect 106: 203–216

    Article  PubMed  CAS  Google Scholar 

  • Rie MT, Lendas KA, Callard IP. (2001) Cadmium: tissue distribution and binding protein induction in the painted turtle, Chrysemys picta. Comp Biochem Physiol 130C:41–51

    CAS  Google Scholar 

  • Roesijadi G. (1996) Metallothionein and its role in toxic metal regulation. Comp Biochem Physiol 113C:117–123

    CAS  Google Scholar 

  • Sato M, Nagai Y. (1989) Effect of zinc deficiency on the accumulation of metallothionein and cadmium in the rat liver and kidney. Arch Environ Contam Toxicol 18: 587–593

    Article  PubMed  CAS  Google Scholar 

  • Schümann K, Friebel P, Schmolke G, Elsenhans B. (1996) State of iron repletion and cadmium tissue accumulation as a function of growth in young rats after oral cadmium exposure. Arch Environ Contam Toxicol 31: 483–487

    Article  PubMed  Google Scholar 

  • Stoeppler M, Piscator M. 1988 Cadmium. Environm. Toxin Series 2. Tokyo: Springer-Verlag

  • Suzuki KT, Yaguchi K, Ohnuki R, Nishikawa M, Yamada YK. (1983) Extent of cadmium accumulation and its effect on essential metals in liver, kidney, and body fluids. J Toxicol Environ Health 11: 713–726

    Article  PubMed  CAS  Google Scholar 

  • Świergosz R, Zakrzewska M, Sawicka-Kapusta K, Bacia K, Janowska I. (1998) Accumulation of cadmium in and its effect on bank vole tissues after chronic exposure. Ecotoxicol Environ Saf 41: 130–136

    Article  PubMed  Google Scholar 

  • Świergosz-Kowalewska R, Gramatyka M, Reczyński W. (2005) Changes in metals distribution in the tissues of shrews, Sorex araneus. J Environ Quality, 34: 1519–1529

    Article  CAS  Google Scholar 

  • Świergosz-Kowalewska R. (2001). Cadmium distribution and toxicity in tissues of small rodents. Microsc Res Tech 55(3): 208–222

    Article  PubMed  Google Scholar 

  • Świergosz-Kowalewska R, Bednarska A, Kafel A. 2006 Glutathione levels and enzyme activity in the tissues of bank vole Clethrionomys glareolus chronically exposed to a mixture of metal contaminants. Chemosphere 65, 963–974

    Google Scholar 

  • Waalkes MP. (2000) Cadmium carcinogenesis in review. J Inorganic Biochem 79: 241–244

    Article  CAS  Google Scholar 

  • Włostowski T, Krasowska A, Bonda E. (2003) An iron-rich diet protects the liver and kidneys against cadmium-induced injury in the bank vole (Clethrionomys glareolus). Ecotoxicol Environ Saf 54:194–198

    Article  PubMed  Google Scholar 

  • Zar JH. 1999 Biostatistical Analysis. Upper Saddle River, NJ: Prentice Hall Inc.; 663 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Świergosz-Kowalewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Świergosz-Kowalewska, R., Holewa, I. Cadmium, zinc and iron interactions in the tissues of bank vole Clethrionomys glareolus after exposure to low and high doses of cadmium chloride. Biometals 20, 743–749 (2007). https://doi.org/10.1007/s10534-006-9037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9037-8

Keywords

Navigation