Skip to main content
Log in

The role of the siderophore pyridine-2,6-bis (thiocarboxylic acid) (PDTC) in zinc utilization by Pseudomonas putida DSM 3601

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Previous work had suggested that in addition to serving the function of a siderophore, pyridine-2,6-bis(thiocarboxylic acid) (PDTC) may also provide producing organisms with the ability to assimilate other divalent transition metals. This was tested further by examining regulation of siderophore production, expression of pdt genes, and growth in response to added zinc. In media containing 10–50 μM ZnCl2, the production of PDTC was found to be differentially repressed, as compared with the production of pyoverdine. The expression of PdtK, the outer membrane receptor involved in PDTC transport, was also reduced in response to added zinc whereas other iron-regulated outer membrane proteins were not. Expression of a chromosomal pdtI:: xylE fusion was repressed to a similar extent in response to zinc or iron. Mutants that cannot produce PDTC did not show a growth enhancement with micromolar concentrations of zinc as seen in the wild type strain. The phenotype of the mutant strains was suppressed by the addition of PDTC. The outer membrane receptor and inner membrane permease components of PDTC utilization were necessary for relief of chelator (1,10-phenanthroline)-induced growth inhibition by Zn:PDTC. Iron uptake from 55Fe:PDTC was not affected by a 32-fold molar excess of Zn:PDTC. The data indicate that zinc present as Zn:PDTC can be utilized by strains possessing PDTC utilization functions but that transport is much less efficient than for Fe:PDTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews SC, Robinson AK, Rodriguez-Quinones F. (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27: 215–237

    Article  PubMed  CAS  Google Scholar 

  • Auld DS (1988) Use of chelating agents to inhibit enzymes. In: Riordan JF, Vallee BL (eds) Methods in Enzymology. San Diego, Academic Press, pp. 110–114

    Google Scholar 

  • Blatny JM, Brautaset T, Winther-Larsen HC, Karunakaran P, Valla S. (1997) Improved broad-host-range RK2 vectors useful for high and low regulated gene expression levels in Gram-negative bacteria. Plasmid 38: 35–51

    Article  PubMed  CAS  Google Scholar 

  • Brandon MS, Paszczynski AJ, Korus R, Crawford RL (2003) The determination of the stability constant for the iron(II) complex of the biochelator pyridine-2,6-bis(monothiocarboxylic acid). Biodegradation 14: 73–82

    Article  PubMed  CAS  Google Scholar 

  • Braun V (1997) Surface signaling: novel transcription initiation mechanism starting from the cell surface. Arch Microbiol 167: 325–331

    Article  PubMed  CAS  Google Scholar 

  • Budzikiewicz H, Hildebrand U, Ockels W, Reiche M, Taraz K. 1983 Weitere aus dem Kulturmedium von Pseudomonas putida isolierte Pyridinderivate-Genuine Metaboliten oder Artefakte? Z Naturforschung 516–520

  • Canovas D, Cases I, de Lorenzo V. (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242–1256

    Article  PubMed  CAS  Google Scholar 

  • Choudhury R, Srivastava S. (2001) Zinc resistance mechanisms in bacteria. Curr Sci 81: 768–775

    CAS  Google Scholar 

  • Cleton F, Turnbull A, Finch C. (1963) Synthetic chelating agents in iron metabolism. J Clin Invest 42: 327–337

    Article  PubMed  CAS  Google Scholar 

  • Cornelis P, Matthijs S. (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4: 787–798

    Article  PubMed  CAS  Google Scholar 

  • Cornelis P, Bouia A, Belarbi A et al. (1989) Cloning and analysis of the gene for the major outer membrane lipoprotein from Pseudomonas aeruginosa. Mol Microbiol 3: 421–428

    Article  PubMed  CAS  Google Scholar 

  • Cortese MS, Paszczynski A, Lewis TA et al. (2002) Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes. Biometals 15:103–120

    Article  PubMed  CAS  Google Scholar 

  • Cox CD, Rinehart KL Jr., Moore ML, Cook JC Jr. (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78: 4256–4260

    Article  PubMed  CAS  Google Scholar 

  • Dybas MJ, Barcelona M, Bezborodnikov S et al. (1998) Pilot-Scale evaluation of bioaugmentation for in-situ remediation of a carbon tetrachloride-contaminated aquifer. Environ Sci Technol 32: 3598–3611

    Article  CAS  Google Scholar 

  • Espinet P, Lorenzo C, Miguel JA, Bois C, Jeannin Y. (1994) Palladium complexes with the tridentate dianionic ligand pyridine-2,6-bis(thiocarboxylate),pdtc. Crystal structure of (n-Bu 4 N)[Pd(pdtc)Br]. Inorg Chem 33: 2052–2055

    Article  Google Scholar 

  • Ferguson AD, Deisenhofer J (2004) Metal import through microbial membranes. Cell 116: 15–24

    Article  PubMed  CAS  Google Scholar 

  • Finney LA, O’Halloran TV. (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300: 931–936

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand U, Lex J, Taraz K et al. (1984) Untersuchungen zum Redox-System Bis-(pyridin-2,6-dicarbothioato)-ferrat(II)/-ferrat(III). Z Naturforschung 39b:1607–1613

    CAS  Google Scholar 

  • Hildebrand UHW, Lex J. (1989) Untersuchungen der Struktur von Co(III)-und Ni(II)-Komplexen der Pyridin-2,6-di(monothiocarbonsaure). Z Naturforsch 44b: 475–480

    Google Scholar 

  • Höfte M, Buysens S, Koedam N, Cornelis P. (1993) Zinc affects siderophore-mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals 6: 85–91

    Article  PubMed  Google Scholar 

  • Klecka GM, Gibson DT. (1981) Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol 41:1159–1165

    PubMed  CAS  Google Scholar 

  • Kruger HJ, Holm RH. (1990) Stabilization of trivalent nickel in tetragonal NiS4N2 and NiN6 environments: Synthesis, structures, redox potentials, and observations related to [NiFe]-hydrogenases. J Am Chem Soc 112: 2955–2963

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Leach L, Lewis TA 2006 Identification and characterization of Pseudomonas membrane transporters necessary for utilization of the siderophore pyridine-2,6-bis(thiocarboxylic acid) (PDTC). Microbiology 152, 3157–3166

    Google Scholar 

  • Lee CH, Lewis TA, Paszczynski A, Crawford RL. (1999) Identification of an extracellular catalyst of carbon tetrachloride dehalogenation from Pseudomonas stutzeri strain KC as pyridine-2,6-bis(thiocarboxylate). Biochem Biophys Res Comm 261: 562–566; erratum 265, 770

    Article  PubMed  CAS  Google Scholar 

  • Lewis TA, Cortese M, Sebat J et al. (2000) A Pseudomonas stutzeri gene cluster encoding the biosynthesis of the CCl4-dechlorination agent pyridine-2,6-bis(thiocarboxylic acid). Environ Microbiol 2: 407–416

    Article  PubMed  CAS  Google Scholar 

  • Lewis TA, Paszczynski A, Gordon-Wylie SW et al. (2001) Carbon tetrachloride dechlorination by the bacterial transition metal chelator pyridine-2,6-bis(thiocarboxylic acid). Environ Sci Technol 35: 552–559

    Article  PubMed  CAS  Google Scholar 

  • Lewis TA, Leach L, Morales SE et al. (2004) Physiological and molecular genetic evaluation of the dechlorination agent, pyridine-2,6-bis(monothiocarboxylic acid) (PDTC) as a secondary siderophore of Pseudomonas. Environ Microbiol 6: 159–169

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM, Halle F, Hohnadel D et al. (1987) Siderophores of Pseudomonas – biological properties. In: Iron Transport in Microbes, Plants and Animals. Weinheim: VCH Verlagsgesellschaft mbH, pp. 189–205

  • Morales SE, Lewis TA. 2006 Transcriptional regulation of the pdt gene cluster of Pseudomonas stutzeri KC involves an AraC/XylS family transcriptional activator (pdtc) and the cognate siderophore pyridine-2,6-bis(thiocarboxylic acid) (PDTC). Appl Environ Microbiol (in press)

  • Mossialos D, Meyer JM, Budzikiewicz H et al. (2000) Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl Environ Microbiol 66: 487–492

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB, Nakamura K (1985) Regulation of iron assimilation in microorganisms. Nutr Rev 43: 193–197

    Article  PubMed  CAS  Google Scholar 

  • Neu MP, Matonic JH, Ruggiero CE, Scott BL (2000) Structural characterization of a plutonium (IV) siderophore complex: single-crystal structure of Pu-desferrioxamine E. E Angew Chemie Int Ed Engl 39:1442–1444

    Article  CAS  Google Scholar 

  • Neu MP, Johnson MT, Matonic JH, Scott BL. (2001) Actinide interactions with microbial chelators: the dioxobis[pyridine-2,6-bis(monothiocarboxylato)] uranium(VI) ion. Acta Cryst C57: 240–242

    CAS  Google Scholar 

  • Ockels W, Romer A, Budzikiewicz H. (1978) An Fe(III) complex of pyridine-2,6-di-(monothiocarboxylic acid)-A novel bacterial metabolic product. Tetrahedron Lett 36: 3341–3342

    Article  Google Scholar 

  • Patzer SI, Hantke K. (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28: 1199–1210

    Article  PubMed  CAS  Google Scholar 

  • Patzer SI, Hantke K. (2000) The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 275: 24321–24332

    Article  PubMed  CAS  Google Scholar 

  • Poole K, McKay GA. (2003) Iron acquisition and its control in Pseudomonas aeruginosa: Many roads lead to Rome. Front Biosci 8: 661–686

    Article  Google Scholar 

  • Rossbach S, Wilson TL, Kukuk ML, Carty HA. (2000) Elevated zinc induces siderophore biosynthesis genes and a zntA-like gene in Pseudomonas fluorescens. FEMS Microbiol Lett 191: 61–70

    Article  PubMed  CAS  Google Scholar 

  • Schalk IJ, Yue WW, Buchanan SK. (2004) Recognition of iron-free siderophores by TonB-dependent iron transporters. Mol Microbiol 54: 14–22

    Article  PubMed  CAS  Google Scholar 

  • Stolworthy JC, Paszczynsk A, Korus R, Crawford RL. (2001) Metal binding by pyridine-2,6-bis(monothiocarboxylic acid), a biochelator produced by Pseudomonas stutzeri and Pseudomonas putida. Biodegradation 12: 411–418

    Article  PubMed  CAS  Google Scholar 

  • Visca P, Colotti G, Serino L et al. (1992) Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl Environ Microbiol 58: 2886–2893

    PubMed  CAS  Google Scholar 

  • Wandersman C, Delepelaire P. (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58: 647

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank George Clark for sharing X-ray diffraction data prior to publication. Funding for this work was supplied by the Vermont Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leach, L.H., Morris, J.C. & Lewis, T.A. The role of the siderophore pyridine-2,6-bis (thiocarboxylic acid) (PDTC) in zinc utilization by Pseudomonas putida DSM 3601. Biometals 20, 717–726 (2007). https://doi.org/10.1007/s10534-006-9035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9035-x

Keywords

Navigation