Skip to main content
Log in

Molecular analysis of a sulphate-reducing consortium used to treat metal-containing effluents

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

A sulphate-reducing consortium used in a bioprocess to remove toxic metals from solution as insoluble sulphides, was characterised using molecular (PCR-based) and traditional culturing techniques. After prolonged cultivation under anoxic biofilm-forming conditions, the mixed culture contained a low diversity of sulphate-reducing bacteria, dominated by one strain closely related to Desulfomicrobium norvegicum, identified by three independent PCR-based analyses. The genetic targets used were the 16S rRNA gene, the 16S-23S rRNA gene intergenic spacer region and the disulfite reductase (dsr) gene, which is conserved amongst all known sulphate-reducing bacteria. This organism was also isolated by conventional anaerobic techniques, confirming its presence in the mixed culture. A surprising diversity of other non-sulphate-reducing facultative and obligate anaerobes were detected, supporting a model of the symbiotic/commensal nature of carbon and energy fluxes in such a mixed culture while suggesting the physiological capacity for a wide range of biotransformations by this stable microbial consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bache R and Pfennig N. (1981). Selective isolation of Acetobacterium woodii on methylated aromatic acids and determination of growth yields. Arch Microbiol 130: 255–261

    Article  CAS  Google Scholar 

  • Barnes LJ, Scheeren PJ and Buisman CJN (1994). Microbial removal of heavy metals and sulfate from contaminated groundwaters. In: Means, JL and Hinchee, RE (eds) Emerging Technology for Bioremediation of Metals, pp 38–49. Lewis Publisher, Boca Raton, USA

    Google Scholar 

  • Chang Y-J, Peacock AD and Long PE (2001). Diversity and Characterization of Sulfate-Reducing Bacteria in Groundwater at a Uranium Mill Tailings Site. Appl Environ Microbiol 67: 3149–3160

    Article  PubMed  CAS  Google Scholar 

  • Dejonghe W, Berteloot E and Goris J (2003). Synergistic Degradation of Linuron by a Bacterial Consortium and Isolation of a Single Linuron-Degrading Variovorax Strain. Appl Environ Microbiol 69: 1532–1541

    Article  PubMed  CAS  Google Scholar 

  • Drury WJ. (1999). Treatment of acid mine drainage with anaerobic solid-substrate reactors. Water Environ Res 71: 1244–1250

    Article  CAS  Google Scholar 

  • Edwards U, Rogall T, Blocker H, Emde M and Bottger EC. (1989). Isolation and direct nucleotide determination of entire genes.Characterisation of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17: 7843–7853

    PubMed  CAS  Google Scholar 

  • Hippe H, Vainshtein M, Gogotova GI and Stackebrandt E. (2003). Reclassification of Desulfobacterium macestii as Desulfomicrobium macestii comb. nov. J Syst Evol Microbiol 53: 1127–1130

    Article  Google Scholar 

  • Hockin SL and Gadd GM. (2003). Linked Redox Precipitation of Sulfur and Selenium under Anaerobic Conditions by Sulfate-Reducing Bacterial Biofilms. Appl Environ Microbiol 69: 7063–7072

    Article  PubMed  CAS  Google Scholar 

  • Holt JG. (1994). Bergeys Manual of Determinative Bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Islam F, Gault AG and Boothman C (2004). Role of metal-reducing bacteria in arsenic release from Bengal Delta sediments. Nature 430: 68–71

    Article  PubMed  CAS  Google Scholar 

  • Kolmert A and Johnson DB. (2001). Remediation of acidic waste waters using immobilised, acidophilic sulfate-reducing bacteria. J Chem Technol Biotechnol 76: 836–843

    Article  CAS  Google Scholar 

  • Lloyd JR, Lovley DR and Macaskie LE. (2004). Biotechnological application of metal-reducing bacteria. Adv Appl Microbiol 53: 85–128

    Article  Google Scholar 

  • Ranjard L, Poly F, Lata J, Mougel C, Thioulouse J and Nazaret S. (2001). Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: Biological and methodological variability. Appl Environ Microbiol 67: 4479–4487

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Fukui M, Wilkes H and Widdle F. (1996). Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl Environ Microbiol 62: 3605–3613

    PubMed  CAS  Google Scholar 

  • Schnell S, Bak F and Pfennig N. (1989). Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulphate-reducing bacteria and description of Desulfobacterium anilini. Arch Microbiol 152: 556–563

    Article  PubMed  CAS  Google Scholar 

  • Schulz S, Dong W, Groth U and Cook AM. (2000). Enantiomeric degradation of 2-(4-sulfophenyl)butyrate via 4-sulfocatechol in Delftia acidovorans SPB1. Appl Environ Microbiol 66: 1905–1910

    Article  PubMed  CAS  Google Scholar 

  • Terzenbach DP and Blaut M. (1994). Transformation of tetrachloroethylene to trichlororethylene by homoacetogenic bacteria. FEMS Microbiol Lett 123: 213–218

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA and Stahl D. (1998). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180: 2975–2982

    PubMed  CAS  Google Scholar 

  • White C and Gadd GM. (1996). A comparison of carbon/energy and complex nitrogen sources for bacterial sulphate reduction: potential applications to bioprecipitation of toxic metals as sulphides. J Indust Microbiol Biotechnol 17: 116–123

    Article  CAS  Google Scholar 

  • White C and Gadd GM. (1996). Mixed sulphate-reducing bacterial cultures for bioprecipitation of toxic metals: factorial and response-surface analysis of the effects of dilution rate, sulphate and substrate concentration. Microbiol 142: 2197–2205

    Article  CAS  Google Scholar 

  • White C, Gadd GM. (1998). Reduction of metal cations and oxyanions by anaerobic and metal-resistant microorganisms: chemistry, physiology and potential for the control and bioremediation of toxic metal pollution. In: Horikoshi K, Grant WD, eds. Extremophiles: Physiology and Biotechnology. New York: John Wiley and Sons; 233–254

  • White C and Gadd GM. (2000). Copper accumulation by sulphate-reducing bacterial biofilms and effects on growth. FEMS Microbiol Lett 183: 313–318

    Article  PubMed  CAS  Google Scholar 

  • White C, Sharman AK and Gadd GM. (1998). An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nature Biotechnol 16: 572–575

    Article  CAS  Google Scholar 

  • White C, Dennis JS and Gadd GM. (2003). A mathematical process model for cadmium precipitation by sulfate-reducing bacterial biofilms. Biodegrad 14: 139–151

    Article  CAS  Google Scholar 

  • Widdel F and Pfennig N. (1981). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments - description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129: 395–400

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Lloyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boothman, C., Hockin, S., Holmes, D.E. et al. Molecular analysis of a sulphate-reducing consortium used to treat metal-containing effluents. Biometals 19, 601–609 (2006). https://doi.org/10.1007/s10534-006-0006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-0006-z

Keywords

Navigation