Advertisement

Biometals

, Volume 18, Issue 3, pp 269–281 | Cite as

Fungal degradation of calcium-, lead- and silicon-bearing minerals

  • Ademola O. Adeyemi
  • Geoffrey M. Gadd
Article

Abstract

The aim of this study was to examine nutritional influence on the ability of selected filamentous fungi to mediate biogenic weathering of the minerals, apatite, galena and obsidian in order to provide further understanding of the roles of fungi as biogeochemical agents, particularly in relation to the cycling of metals and associated elements found in minerals. The impact of three organic acid producing fungi (Aspergillus niger, Serpula himantioides and Trametes versicolor) on apatite, galena and obsidian was examined in the absence and presence of a carbon and energy source (glucose). Manifestation of fungal weathering included corrosion of mineral surfaces, modification of the mineral substrate through transformation into secondary minerals (i.e. crystal formation) and hyphal penetration of the mineral substrate. Physicochemical interactions of fungal metabolites, e.g. H+ and organic acids, with the minerals are thought to be the primary driving forces responsible. All experimental fungi were capable of mineral surface colonization in the absence and presence of glucose but corrosion of the mineral surface and secondary mineral formation were affected by glucose availability. Only S. himantioides and T. versicolor were able to corrode apatite in the absence of glucose but none of the fungi were capable of doing so with the other minerals. In addition, crystal formation with galena was entirely dependent on the availability of glucose. Penetration of the mineral substrates by fungal hyphae occurred but this did not follow any particular pattern. Although the presence of glucose in the media appeared to influence positively the mineral penetrating abilities of the fungi, the results obtained also showed that some geochemical change(s) might occur under nutrient-limited conditions. It was, however, unclear whether the hyphae actively penetrated the minerals or were growing into pre-existing pores or cracks.

Keywords

apatite biogenic weathering corrosion fungi galena obsidian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamo, P, Violante, P. 2000Weathering of rocks and neogenesis of minerals associated with lichen activityAppl Clay Sci.16229256CrossRefGoogle Scholar
  2. Arnott, HJ 1995Calcium oxalate in fungiKhan, SR eds. Calcium Oxalate in Biological SystemsCRC PressBoca Raton73111Google Scholar
  3. Ascaso, C, Wierzchos, J, Castello, R. 1998Study of the biogenic weathering of calcareous litharenite stones caused by lichen and endolithic microorganismsInt Biodeter Biodegr422938CrossRefGoogle Scholar
  4. Banfield, JF, Barker, WW, Welch, SA, Taunton, A. 1999Biological impact on dissolution: application of the lichen model to understanding mineral weathering in the rhizosphereProc Nat Acad Sci. USA9634043411CrossRefPubMedGoogle Scholar
  5. Bennett, PC, Rogers, JR, Choi, WJ, Hiebert, FK. 2001Silicates, silicate weathering, and microbial ecologyGeomicrobiol J18319CrossRefGoogle Scholar
  6. Blaskett, DR, Boxal, D. 1990Lead and its AlloysEllis HorwoodChichester, UKGoogle Scholar
  7. Blum, JD, Klaue, A, Nezat, CA,  et al. 2002Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystemsNature417729731CrossRefPubMedGoogle Scholar
  8. Bock, E, Sand, W. 1993The microbiology of masonry deteriorationJ Appl Bacteriol74503514Google Scholar
  9. Burau, RG 1982LeadPage, AL eds. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties – Agronomy Monograph No. 9.American Society of Agronomy-Soil Science Society of AmericaMadison, USA347365Google Scholar
  10. Burford, EP, Fomina, M, Gadd, GM. 2003Fungal involvement in bioweathering and biotransformation of rocks and mineralsMineral Mag6711271155CrossRefGoogle Scholar
  11. Burgstaller, W, Schinner, F. 1993Leaching of metals with fungiJ Biotechnol2791116CrossRefGoogle Scholar
  12. Callot, G, Maurette, M, Pottier, L, Dubois, A. 1987Biogenic etching of microfractures in amorphous and crystalline silicatesNature328147149CrossRefGoogle Scholar
  13. Davies, BE 1995LeadAlloway, BJ eds. Heavy Metals in SoilsBlackieGlasgow206223Google Scholar
  14. Diercks, M, Sand, W, Bock, E. 1991Microbial corrosion of concreteExperientia47514516Google Scholar
  15. Ehrlich, HL. 1981GeomicrobiologyMarcel Dekker Inc.New YorkGoogle Scholar
  16. Ehrlich, HL. 1998Geomicrobiology: its significance for geologyEarth-SciRev454560CrossRefGoogle Scholar
  17. Gadd, GM. 1993Interactions of fungi with toxic metalsNew Phytol1242560Google Scholar
  18. Gadd, GM. 1999Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochiemal processesAdv Microb Physiol414792PubMedGoogle Scholar
  19. Gharieb, MM, Sayer, JA, Gadd, GM. 1998Solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioidesMycol Res102825830CrossRefGoogle Scholar
  20. Gooday, GW. 1995The dynamics of hyphal growthMycol Res99385394Google Scholar
  21. Gordon, SJ, Brady, PV. 2002In situ determination of long-term basaltic glass dissolution in the unsaturated zoneChem Geol190113122CrossRefGoogle Scholar
  22. Greninger, D, Kollonitsch, V, Kline, CH, Willemsens, LC, Cole, JC. 1974Lead ChemicalsInternational Lead Zinc Research OrganizationNew YorkGoogle Scholar
  23. Gu, J, Ford, TE, Berke, NS, Mitchell, R. 1998Biodeterioration of concrete by the fungusFusarium. Int Biodeter Biodegrad41101109CrossRefGoogle Scholar
  24. Guidry, MW, Mackenzie, FT. 2003Experimental study of igneous and sedimentary apatite dissolution: control of pH, distance from equilibrium, and temperature on dissolution ratesGeochim Cosmochim Acta6729492963CrossRefGoogle Scholar
  25. Harley, AD, Gilkes, RJ. 2000Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overviewNutrient Cycling in Agroecosystems561136CrossRefGoogle Scholar
  26. Harris, N, Bickle, M, Chapman, H, Fairchild, I, Bunbury, J. 1998The significance of Himalayan rivers for silicate weathering rates: evidence from the Bhote Kosi tributaryChem Geol144205220CrossRefGoogle Scholar
  27. Jacobs, H, Boswell, GP, Ritz, K, Davidson, FA, Gadd, GM. 2002Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solaniFEMS Microbiol Ecol406571CrossRefGoogle Scholar
  28. Jongmans, AG, Breemen, N, Lundström, U,  et al. 1997Rock-eating fungiNature389682683CrossRefGoogle Scholar
  29. Kurtz, AC, Derry, LA, Chadwick, OA. 2002Germanium-silicon fractionation in the weathering environmentGeochim Cosmochim Acta6615251537CrossRefGoogle Scholar
  30. Landeweert, R, Hoffland, E, Finlay, RD, Kuyper, TW, Breemen, N. 2001Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from mineralsTrends Ecol Evol16248254CrossRefPubMedGoogle Scholar
  31. Lapeyrie, F, Ranger, J, Vairelles, D. 1991Phosphate-solubilizing activity of ectomycorrhizal fungi in vitroCan J Bot69342346Google Scholar
  32. Lee, MR, Parsons, I. 1999Biomechanical and biochemical weathering of lichen-encrusted granite: textural controls on organic-mineral interactions and deposition of silica-rich layersChem Geol161385397CrossRefGoogle Scholar
  33. Low, GA, Young, ME, Martin, P, Palfreyman, JW. 2000Assessing the relationship between the dry rot fungus Serpula lacrymans and selected forms of masonryInt Biodeter Biodegr46141150CrossRefGoogle Scholar
  34. Ma, YQ, Traina, SJ, Logan, TJ. 1993In situ lead immobilization by apatiteEnviron Sci Technol2718031810CrossRefGoogle Scholar
  35. Pokrovski, GS, Schott, J. 1998Experimental study of the complexation of silicon and germanium with aqueous organic species: implications for germanium and silicon transport and Ge/Si ratio in natural waterGeochim Cosmochim Acta6234133428CrossRefGoogle Scholar
  36. Rogers, JR, Bennett, PC, Choi, WJ. 1998Feldspars as a source of nutrients for microorganismsAm. Mineral8315321540Google Scholar
  37. Ruby, MV, Davis, A, Nicholson, A. 1994In situ formation of lead phosphates in soils as a method to immobilize leadEnviron Sci Technol28646654CrossRefGoogle Scholar
  38. Sayer, JA, Cotter-Howells, JD, Watson, C, Hillier, S, Gadd, GM. 1999Lead mineral transformation by fungiCurr Biol9691694CrossRefPubMedGoogle Scholar
  39. Sayer, JA, Gadd, GM. 1997Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus nigerMycol Res101653661CrossRefGoogle Scholar
  40. Sayer, JA, Raggett, SL, Gadd, GM. 1995Solubilization of insoluble metal compounds by soil fungi: development of a screening methods for solubilizing ability and metal toleranceMycol Res99987993Google Scholar
  41. Sterflinger, K. 2000Fungi as geologic agentsGeomicrobiol J1797124CrossRefGoogle Scholar
  42. Taunton, AE, Welch, SA, Banfield, JF. 2000Microbial controls on phosphate and lanthanide distributions during granite weathering and soil formationChem Geol169371382CrossRefGoogle Scholar
  43. Taylor, AS, Blum, JD, Lasaga, AC, MacInnis, IN. 2000Kinetics of dissolution and Sr release during biotite and phlogopite weatheringGeochim Cosmochim Acta6411911208CrossRefGoogle Scholar
  44. Verrecchia, EP, Dumont, JL, Verrecchia, KE. 1993Role of calcium oxalate biomineralization by fungi in the formation of calcretes: a case study from Nazareth, IsraelJ Sedim Petrol6310001006Google Scholar
  45. Wallander, H. 2000Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungiPlant and Soil218249256CrossRefGoogle Scholar
  46. Welch, SA, Taunton, AE, Banfield, JF. 2002Effect of microorganisms and microbial metabolites on apatite dissolutionGeomicrobiol J19343367CrossRefGoogle Scholar
  47. Welch, SA, Ullman, WJ. 1993The effect of organic acids on plagioclase dissolution rates and stoichiometryGeochim Cosmochim Acta5727252736CrossRefGoogle Scholar
  48. Welch, SA, Ullman, WJ. 1999The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5° and 35 °CGeochim Cosmochim Acta6332473259CrossRefGoogle Scholar
  49. White, C, Sayer, JA, Gadd, GM. 1997Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contaminationFEMS Microbiol Rev20503516CrossRefPubMedGoogle Scholar
  50. Whitelaw, MA. 2000Growth promotion of plants inoculated with phosphate-solubilizing fungiAdv Agron6999151Google Scholar
  51. Whitelaw, MA, Harden, TJ, Heylar, KR. 1999Phosphate solubilisation in solution culture by the soil fungus Penicillium radicumSoil Biol Biochem31655665CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Division of Environmental and Applied Biology, Biological Sciences Institute, School of Life SciencesUniversity of DundeeDundeeUK

Personalised recommendations