Skip to main content

Advertisement

Log in

The southwestern South Atlantic continental shelf biogeochemical divide

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The structure of the phytoplankton community is strongly influenced by environmental variables linked with variations in sea–air CO2 net fluxes (FCO2). However, compared to physical parameters, the relationship between phytoplankton and CO2 dynamics has been largely unexplored. The complex interplay between CO2 uptake by the coastal ocean and the dominance of different phytoplankton groups was investigated in the southwestern South Atlantic Ocean (20°S–50°S), mostly during spring. We addressed this challenge by synoptically characterizing the study region for both FCO2 and phytoplankton pigment composition. Thus, we discern the phytoplankton biomass in different groups by pigment composition information obtained through high-performance liquid chromatography (HPLC), with further determination of phytoplankton groups using the CHEMTAX approach. The effects of biology and temperature on sea surface CO2 partial pressure were evaluated, and phytoplankton groups were linked to CO2 exchanges. The results highlight the importance of biology on the modulation of FCO2 in the study region. Hence, we delimited the southwestern South Atlantic continental shelf into two distinct biogeochemical regions divided by a transitional zone (~ 35°S) according to the distribution patterns of both phytoplankton and CO2 behavior. North of 35°S, higher sea surface temperature and salinity, combined with lower phytoplankton biomass, were associated with a domination of generally very small cyanobacteria and CO2-outgassing behavior. In the transitional zone (35°S–40°S), changes in both salinity and temperature promoted a shift in dominant phytoplankton groups and, consequently, changed the ocean surface behavior from a CO2-outgassing zone to an ingassing zone. Farther south, between 40°S and 50°S, the higher phytoplankton biomass produced by diatoms, associated with lower values of both sea surface temperature and salinity, was positively related to stronger CO2-uptake rates. This link between the shifts in phytoplankton community structure and CO2-uptake rates is a potential target to shed light on long-term CO2-flux modulation in the southwestern South Atlantic Ocean. Thus, the main findings here can be relevant for predicting the potential consequences of future climate-driven changes in ocean CO2 uptake, especially considering the warming ocean conditions associated with a shift toward smaller phytoplankton cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J (2004) Marine fronts in the continental shelves of austral South America: physical and ecological processes. J Mar Syst 44:83–105. https://doi.org/10.1016/j.jmarsys.2003.09.005

    Article  Google Scholar 

  • Akselman R, Negri RM (2012) Blooms of Azadinium cf. spinosum Elbrächter et Tillmann (Dinophyceae) in northern shelf waters of Argentina. Southwestern Atlantic. Harmful Algae 19:30–38. https://doi.org/10.1016/j.hal.2012.05.004

    Article  Google Scholar 

  • Arrigo et al (2005) Marine microorganisms and global nutrient cycles. Nature 437:349–355. https://doi.org/10.1038/nature04158

    Article  Google Scholar 

  • Bach LT, Hernández-Hernández N, Taucher J, Spisla C, Sforna C, Riebesell U, Arístegui J (2019) Effects of elevated CO2 on a natural diatom community in the subtropical NE Atlantic. Front Marine Sci 6:75. https://doi.org/10.3389/fmars.2019.00075

    Article  Google Scholar 

  • Barroso H, de Becker S, Melo HVMM (2016) Influence of river discharge on phytoplankton structure and nutrient concentrations in four tropical semiarid estuaries. Braz J Oceanogr. https://doi.org/10.1590/S1679-87592016101406401

    Article  Google Scholar 

  • Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ (2010) Patterns of diversity in marine phytoplankton. Science 327:1509. https://doi.org/10.1126/science.1184961

    Article  Google Scholar 

  • Basu S, Mackey KRM (2018) Phytoplankton as key mediators of the biological carbon pump: their responses to a changing climate. Sustainability. https://doi.org/10.3390/su10030869

    Article  Google Scholar 

  • Bauer JE, Cai W-J, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PAG (2013) The changing carbon cycle of the coastal ocean. Nature 504:63–70. doi:https://doi.org/10.1038/nature12857

    Article  Google Scholar 

  • Beaugrand G, Edwards M, Legendre L (2010) Marine biodiversity, ecosystem functioning, and carbon cycles. Proc Natl Acad Sci USA 107(22):10120–4. https://doi.org/10.1073/pnas.0913855107

    Article  Google Scholar 

  • Bergo NM, Signori CN, Amado AM, Brandini FP, Pellizari VH (2017) The partitioning of carbon biomass among the Pico- and nano-plankton community in the South Brazilian bight during a strong summer intrusion of South Atlantic Central Water. Front Mar Sci 4:238. https://doi.org/10.3389/fmars.2017.00238

    Article  Google Scholar 

  • Bianchi AA, Bianucci L, Piola AR, Pino DR, Schloss I, Poisson A, Balestrini CF (2005) Vertical stratification and air-sea CO2 fluxes in the patagonian shelf. J Geophys Res 110:C07003. https://doi.org/10.1029/2004JC002488

    Article  Google Scholar 

  • Bianchi AA, Pino DR, Perlender HGI, Osiroff AP, Segura V, Lutz V, Clara ML, Balestrini CF, Piola AR (2009) Annual balance and seasonal variability of sea–air CO2 fluxes in the Patagonia Sea: their relationship with fronts and chlorophyll distribution. J Geophys Res 114:C03018. https://doi.org/10.1029/2008JC004854

    Article  Google Scholar 

  • Braga ES, Chiozzini VC, Berbel GBB, Maluf JCC, Aguiar VMC (2008) Nutrient distributions over the Southwestern South Atlantic continental shelf from Mar del Plata (Argentina) to Itajaí (Brazil): winter–summer aspects. Cont Shelf Res 28:1649–1661. https://doi.org/10.1016/j.csr.2007.06.018

    Article  Google Scholar 

  • Brandini FP (1990) Hydrography and characteristics of the phytoplankton in shelf and oceanic waters off southeastern Brazil during winter (July/August 1982) and summer (February/March 1984). Hydrobiologia 196:111–148. https://doi.org/10.1007/BF00006105

    Article  Google Scholar 

  • Brandini FP, Nogueira M, Simião M, Carlos Ugaz Codina J, Almeida Noernberg M, Pereira F, Nogueira M, Simião M, Carlos J, Codina U, Almeida M (2014) Deep chlorophyll maximum and plankton community response to oceanic bottom intrusions on the continental shelf in the South Brazilian Bight. Cont Shelf Res 89:61–75. https://doi.org/10.1016/j.csr.2013.08.002

    Article  Google Scholar 

  • Brandini FP, Michelazzo LS, Freitas GR, Campos G, Chuqui M, Jovane L (2019) Carbon flow for plankton metabolism of Saco do Mamanguá Ría, Bay of Ilha Grande, a subtropical coastal environment in the south Brazil bight. Front Mar Sci 6:584. https://doi.org/10.3389/fmars.2019.00584

    Article  Google Scholar 

  • Cabré A, Marinov I, Leung S (2015) Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 Earth system models. Clim Dyn 45:1253–1280. https://doi.org/10.1007/s00382-014-2374-3

    Article  Google Scholar 

  • Cai W-J (2003) Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume. Geophys Res Lett 30:1032. https://doi.org/10.1029/2002GL016312

    Article  Google Scholar 

  • Cai W-J, Dai M, Wang Y (2006) Air-sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophys Res Lett 33:L12603. https://doi.org/10.1029/2006GL026219

    Article  Google Scholar 

  • Cao Z, Dai M, Zheng N, Wang D, Li Q, Zhai W et al (2011) Dynamics of the carbonate system in a large continental shelf system under the influence of both a river plume and coastal upwelling. J Geophys Res 116:G02010. https://doi.org/10.1029/2010JG001596

    Article  Google Scholar 

  • Cao Z, Yang W, Zhao Y, Guo X, Yin Z, Du C, Zhao H, Dai M (2020) Diagnosis of CO2 dynamics and fluxes in global coastal oceans. Natl Sci Rev 7(4):786–797. https://doi.org/10.1093/nsr/nwz105

    Article  Google Scholar 

  • Carreto JI, Montoya N, Akselman R, Carignan MO, Silva RI, Colleoni DAC (2008) Algal pigment patterns and phytoplankton assemblages in different water masses of the Río de la Plata maritime front. Cont Shelf Res 28(13):1589–1606

    Article  Google Scholar 

  • Carreto JI, Montoya NG, Carignan MO, Akselman R, Acha EM, Derisio C (2016) Environmental and biological factors controlling the spring phytoplankton bloom at the Patagonian shelf-break front-Degraded fucoxanthin pigments and the importance of microzooplankton grazing. Prog Oceanogr 146:1–21. https://doi.org/10.1016/j.pocean.2016.05.002

    Article  Google Scholar 

  • Carreto JI, Carignan MO, Montoya NG, Cozzolino E, Akselman R (2018) Mycosporine-like amino acids and xanthophyll-cycle pigments favour a massive spring bloom development of the dinoflagellate Prorocentrum minimum in Grande Bay (Argentina), an ozone hole affected area. J Mar Syst 178:15–28

    Article  Google Scholar 

  • Carstensen J, Chierici M, Gustafsson BG, Gustafsson E (2018) Long-term and seasonal trends in estuarine and coastal carbonate systems. Glob Biogeochem Cycles 32:497–513. https://doi.org/10.1002/2017GB005781

    Article  Google Scholar 

  • Carvalho ACO, Kerr R, Mendes CRB, Azevedo JLL, Tavano VM (2021) Phytoplankton strengthen CO2 uptake in the South Atlantic Ocean. Prog Oceanogr 190:102476. https://doi.org/10.1016/j.pocean.2020.102476

    Article  Google Scholar 

  • Carvalho-Borges M, Orselli IB, de Carvalho Ferreira ML, Kerr R (2018) Seawater acidification and anthropogenic carbon distribution on the continental shelf and slope of the western South Atlantic Ocean. J Mar Syst 187:62–81. https://doi.org/10.1016/j.jmarsys.2018.06.008

    Article  Google Scholar 

  • Castelão RM, Barth JA (2006) Upwelling around Cabo Frio, Brazil: the importance of wind stress curl. Geophys Res Lett 33:L03602–L03605. https://doi.org/10.1029/2005GL025182

    Article  Google Scholar 

  • Castro BM, Miranda LB (1998) Physical oceanography of the western Atlantic Continental Shelf located between 4°N and 34°S coastal segment (4, w). In: Robinson AR, Brink KH (eds) The sea, vol 11. Wiley, New York, pp 209–251

    Google Scholar 

  • Castro BM, Brandini FP, Pires-Vanin AMS, Miranda LB (2006) Multidisciplinary oceanographic processes on the western Atlantic continental shelf between 4°N and 34°S. The Sea 11:209–251

    Google Scholar 

  • Chen C-TA, Borges AV (2009) Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Res 56:578–590. doi:https://doi.org/10.1016/j.dsr2.2009.01.001

    Article  Google Scholar 

  • Chen C-TA, Huang T-H, Chen Y-C, Bai Y, He X, Kang Y (2013) Air–sea exchanges of CO2 in the world’s coastal seas. Biogeosciences 10:6509–6544. https://doi.org/10.5194/bg-10-6509-2013

    Article  Google Scholar 

  • Craig SE, Thomas H, Jones CT, Li WK, Greenan BJ, Shadwick EH, Burt WJ (2013) Temperature and phytoplankton cell size regulate carbon uptake and carbon overconsumption in the ocean. Biogeosciences Discuss 10(7):11255–11282. https://doi.org/10.5194/bgd-10-11255-2013

    Article  Google Scholar 

  • Craig SE, Thomas H, Jones CT, Li WK, Greenan BJ, Shadwick EH, Burt WJ (2015) The effect of seasonality in phytoplankton community composition on CO2 uptake on the Scotian Shelf. J Mar Syst 1:147:52–60

    Article  Google Scholar 

  • Cullen JJ, Franks PJS, Karl DM, Longhurst A (2002) Physical influences on marine ecosystem dynamics. In: Robinson AR, McCarthy JJ, Rothschild BJ (eds) The Sea. Wiley, Hoboken

    Google Scholar 

  • de Souza AGQ, Kerr R, de Azevedo JLL (2018) On the influence of subtropical mode water on the South Atlantic Ocean. J Mar Syst 185:13–24. https://doi.org/10.1016/j.jmarsys.2018.04.006

    Article  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (eds) (2007) PICES Special Publication 3, p 191

  • Doney SC, Busch DS, Cooley SR, Kroekert KJ (2020) The impacts of ocean acidification on marine ecosystems and reliant human communities. Ann Rev Environ Res 45:1

    Article  Google Scholar 

  • Endo H, Ogata H, Suzuki K (2018) Contrasting biogeography and diversity patterns between diatoms and haptophytes in the central Pacific Ocean. Sci Rep 8:10916. https://doi.org/10.1038/s41598-018-29039-9

    Article  Google Scholar 

  • Enochs IC, Manzello DP, Jones PR, Stamates SJ, Carsey TP (2019) Seasonal carbonate chemistry dynamics on Southeast Florida coral reefs: localized acidification hotspots from navigational inlets. Front Mar Sci 6:160. https://doi.org/10.3389/fmars.2019.00160

    Article  Google Scholar 

  • Eyre BD, Ferguson AJP (2005) Benthic metabolism and nitrogen cycling in a sub-tropical east Australian estuary (Brunswick)—temporal variability and controlling factors. Limnol Oceanogr 50:81–96

    Article  Google Scholar 

  • Finkel ZV, Sebbo J, Feist-Burkhardt S et al (2007) A universal driver of macroevolutionary change in the size of marine phytoplankton over the cenozoic. Proc Natl Acad Sci USA 104:20416–20420

    Article  Google Scholar 

  • Fischer G, Karakaş G (2009) Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean. Biogeosciences 6(1):85–102

    Article  Google Scholar 

  • Friedlingstein P, Jones MW, O’Sullivan M, Andrew RM, Hauck J, Peters GP, Peters W et al (2019) Global Carbon Budget. Earth Syst Sci Data 11(4):1783–1838. https://doi.org/10.5194/essd-11-1783-2019

    Article  Google Scholar 

  • Garcia CAE, Sarma YVB, Mata MM, Garcia VMT (2004) Chlorophyll variability and eddies in the Brazil–Malvinas confluence region. Deep Sea Res Part II 51:159–172

    Article  Google Scholar 

  • Garcia CA, Garcia VM, Dogliotti AI, Ferreira A, Romero SI, Mannino A, Souza MS, Mata MM (2011) Environmental conditions and bio-optical signature of a coccolithophorid bloom in the Patagonian shelf. J Geophys Res Oceans 2011:116

    Google Scholar 

  • Gayoso AM, Podestá G (1996) Surface hydrography and phytoplankton of the Brazil–Malvinas currents confluence. J Plankton Res 18(6):941–951. https://doi.org/10.1093/plankt/18.6.941

    Article  Google Scholar 

  • Gérikas Ribeiro C, dos Santos AL, Marie D, Pellizari VH, Brandini FP, Vaulot D (2016) Pico and nanoplankton abundance and carbon stocks along the. Brazilian Bight PeerJ 4:e2587. https://doi.org/10.7717/peerj.2587

    Article  Google Scholar 

  • Gonçalves-Araujo R, De Souza MS, Mendes CRB, Tavano VM, Pollery RC, Garcia CAE (2012) Brazil-Malvinas confluence: effects of environmental variability on phytoplankton community structure. J Plankton Res 34:399–415. https://doi.org/10.1093/plankt/fbs013

    Article  Google Scholar 

  • Goncalves-Araujo R, De Souza MS, Mendes CRB, Tavano VM, Garcia CAE (2016) Seasonal change ofphytoplankton (spring vs. summer) in the southern Patagonian shelf. Cont Shelf Res 124:142–152. https://doi.org/10.1016/j.csr.2016.03.023

    Article  Google Scholar 

  • Gruber N (2015) Ocean biogeochemistry: carbon at the coastal interface. Nature. https://doi.org/10.1038/nature14082

    Article  Google Scholar 

  • Guenther M, Gonzalez-Rodriguez E, Carvalho WF, Rezende CE, Mugrabe G, Valentin JL (2008) Plankton trophic structure and particulate organic carbon production during a coastal downwelling-upwelling cycle. Mar Ecol Prog Ser 363:109–119

    Article  Google Scholar 

  • Guinder VA, Tillmann U, Krock B, Delgado AL, Krohn T, Garzon Cardona JE, Lara R (2018) Plankton multiproxy analyses in the Northern Patagonian shelf, Argentina: community structure, phycotoxins, and characterization of toxic Alexandrium strains. Front Mar Sci 5:394

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9

    Google Scholar 

  • Higgins H, Wright S, Schluter L (2011) Quantitative interpretation of chemo-taxonomic pigment data. In: Roy S, Llewellyn C, Egeland E, Johnsen G (eds) Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. Cambridge University Press, Cambridge, pp 257–313

    Chapter  Google Scholar 

  • Hilligsøe KM (2011) Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux. Deep-Sea Res I 58:826–838

    Article  Google Scholar 

  • Iglesias-Rodriguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Boessenkool KP (2008) Phytoplankton calcification in a high-CO2 World. Science 320(5874):336–340. https://doi.org/10.1126/science.1154122

    Article  Google Scholar 

  • Ito RG, Schneider B, Thomas H (2005) Distribution of surface fCO2 and air-sea fluxes in the Southwestern subtropical Atlantic and adjacent continental shelf. J Mar Syst 56(3–4):227–242. https://doi.org/10.1016/j.jmarsys.2005.02.005

    Article  Google Scholar 

  • Ito RG, Garcia CAE, Tavano VM (2016) Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011. Cont Shelf Res 119:68–84. https://doi.org/10.1016/j.csr.2016.03.0130278-4343

    Article  Google Scholar 

  • Jeffrey SW, Wright SW, Zapata M (2011) Microalgal classes and their signature pigments. In: Roy S, Llewellyn C, Egeland ES, Johnsen G (eds) Phytoplankton pigments. Cambridge University Press, Cambridge, pp 3–77

    Chapter  Google Scholar 

  • Ji X, Jolanda MH, Verspagen, Dedmer B, Van de Waal BR, Jef Huisman (2020) Phenotypic plasticity of carbon fixation stimulates cyanobacterial blooms at elevated CO2. Sci Adv 6(8):eaax2926. https://doi.org/10.1126/sciadv.aax2926

    Article  Google Scholar 

  • Jiang L-Q, Cai W-J, Wanninkhof R, Wang Y-C, Lüger H (2008) Air–sea CO2 fluxes on the U.S. South Atlantic bight: spatial and seasonal variability. J Geophys Res 113:C07019. https://doi.org/10.1029/2007JC004366

    Article  Google Scholar 

  • Jiang LQ, Cai W-J, Wang Y, Bauer JE (2013) Influence of terrestrial inputs on continental shelf carbon dioxide. Biogeosciences 10(2):839–849

    Article  Google Scholar 

  • Kahl LC, Bianchi AA, Osiroff AP, Pino DR, Piola AR (2017) Distribution of sea-air CO2 fluxes in the Patagonian Sea: seasonal, biological, and thermal effects. Cont Shelf Res 143:18–28. https://doi.org/10.1016/j.csr.2017.05.011

    Article  Google Scholar 

  • Kerr R, da Cunha LC, Kikuchi RKP, Horta PA, Ito RG, Muler MN, Copertino MS et al (2016) The western south Atlantic ocean in a high-CO 2 world: current measurement capabilities and perspectives. Environ Manage 57:740–752. https://doi.org/10.1007/s00267-015-0630-x

    Article  Google Scholar 

  • Körtzinger A, Send U, Lampitt RS, Hartman S, Wallace DWR, Karstensen J et al (2008) The seasonal pCO2 cycle at 49°N/16.5°W in the northeastern Atlantic Ocean and what it tells us about biological productivity. J Phys Res. https://doi.org/10.1029/2007jc004347

    Article  Google Scholar 

  • Laruelle GG, Dürr HH, Slomp CP, Borges AV (2010) Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys Res Lett 37:L15607. https://doi.org/10.1029/2010GL043691

    Article  Google Scholar 

  • Laruelle GG, Landschützer P, Gruber N, Tison J-L, Delille B, Regnier P (2017) Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation. Biogeosciences 14:4545–4561. https://doi.org/10.5194/bg-14-4545-2017

    Article  Google Scholar 

  • Le Quéré C, Andres RJ, Boden T, Conway T, Houghton RA, House JI, Marland G, Peters GP, van der Werf GR, Ahlström A, Andrew RM, Bopp L, Canadell JG, Ciais P, Doney SC, Enright C, Friedlingstein P, Huntingford C, Jain AK, Jourdain C, Kato E, Keeling RF, Goldewijk K, Levis K, Levy S, Lomas P, Poulter M, Raupach B, Schwinger MR, Sitch J, Stocker S, Viovy BD, Zaehle N, Zeng N (2013) The global carbon budget 1959–2011. Earth Syst Sci Data 5:165–185. https://doi.org/10.5194/essd-5-165-2013

    Article  Google Scholar 

  • Lencina-Avila JM, Ito RG, Garcia CAE, Tavano VM (2016) Sea-air carbon dioxide fluxes along 35°S in the South Atlantic Ocean. Deep-Sea Res I 115:175–187. https://doi.org/10.1016/j.dsr.2016.06.004

    Article  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 systems calculations. ORNL/CDIAC 105. Oak Ridge, Tennessee, Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory US Department of Energy

  • Li WKW, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539. https://doi.org/10.1126/science.1179798

    Article  Google Scholar 

  • Li Y, Yang H, Zhang L, Yang X, Zang H, Fan W, Wang G (2020) The spatiotemporal variation and control mechanism of surface pCO2 in winter in Jiaozhou Bay, China. Cont Shelf Res 206:104208. https://doi.org/10.1016/j.csr.2020.104208

    Article  Google Scholar 

  • Lima CR, Mendes CRB, Tavano VM, Detoni AMS, Secchi ER (2019) Chemotaxonomy-based mapping of phytoplankton communities in the subtropical Southwestern Atlantic Ocean, with emphasis on the marine cyanobacterium Trichodesmium. Prog Oceanogr 172:77–88. https://doi.org/10.1016/j.pocean.2019.01.008

    Article  Google Scholar 

  • Litchman E, Klausmeier C, Yoshiyama K (2009) Contrasting size evolution in marine and freshwater diatoms. PNAS 1068:2665–2670. https://doi.org/10.1073/pnas.0810891106

    Article  Google Scholar 

  • Liutti CC, Kerr R, Monteiro T, Orselli IBM, Ito RG, Garcia CAE (2021) Sea surface CO2 fugacity in the southwestern South Atlantic Ocean: an evaluation based on satellite-derived images. Mar Chem. https://doi.org/10.1016/j.marchem.2021.104020

    Article  Google Scholar 

  • Lutz VA, Segura V, Dogliotti AI, Gagliardini DA, Bianchi AA, Balestrini CF (2010) Primary production in the Argentine Sea during spring estimated by field and satellite models. J Plankton Res 32:181–195. https://doi.org/10.1093/plankt/fbp117

    Article  Google Scholar 

  • Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser. https://doi.org/10.3354/meps144265

    Article  Google Scholar 

  • Marañón E (2015) Cell size as a key determinant of phytoplankton metabolism and community structure. Annu Rev Mar Sci. 7:241–64. https://doi.org/10.1146/annurev-marine-010814-015955

    Article  Google Scholar 

  • Marañón E, Holligan PM, Varela M (2000) Basin-scale variability of phytoplankton biomass and growth in the Atlantic Ocean. Deep-Sea Res. 47:825–857. https://doi.org/10.1016/S0967-0637(99)00087-4

    Article  Google Scholar 

  • Marañón E, Cermeño P, Latasa M, Tadonléké R (2012) Temperature, resources, and phytoplankton size structure in the ocean. Limnol Oceanogr 57:1266–1268

    Article  Google Scholar 

  • Matano RP, Palma ED, Piola AR (2010) The influence of the Brazil and Malvinas currents on the Southwestern Atlantic shelf circulation. Ocean Sci 6:983–995. https://doi.org/10.5194/os-6-983-2010

    Article  Google Scholar 

  • Mendes CR, Cartaxana P, Brotas V (2007) HPLC determination of phytoplankton and microphytobenthos pigments: comparing resolution and sensitivity of a C18 and a C8 method. Limnol Oceanogr Methods 5:363–370. https://doi.org/10.4319/lom.2007.5.363

    Article  Google Scholar 

  • Millero FJ (2007) The marine inorganic carbon cycle. Chem Rev 107(2):308–341. https://doi.org/10.1021/cr0503557

    Article  Google Scholar 

  • Moser GA, Castro N, Takanohashi R, Fernandes A, Pollery RC, Tenenbaum D (2016) The influence of surface low-salinity waters and cold subsurface water masses on picoplankton and ultraplankton distribution in the continental shelf off Rio de Janeiro, SE Brazil. Cont Shelf Res 120:82–95. https://doi.org/10.1016/j.csr.2016.02.017

    Article  Google Scholar 

  • Moser GAO, Piedras FR, Oaquim ABJ, Souza DS, Leles SG, de Lima DT et al (2017) Tidal effects on phytoplankton assemblages in a near-pristine estuary: a trait-based approach for the case of a shallow tropical ecosystem in Brazil. Mar Ecol 38:4. https://doi.org/10.1111/maec.12450

    Article  Google Scholar 

  • Negri RM, Carreto JI, Benavides HR, Akselman R, Lutz VA (1992) An unusual bloom of Gyrodinium cf. aureolum in the Argentine sea: community structure and conditioning factors. J Plankton Res 14:261–269. https://doi.org/10.1093/plankt/14.2.261

    Article  Google Scholar 

  • Oliveira RR, Pezzi LP, Souza RB, Santini MF, Cunha LC, Pacheco FS (2019) First measurements of the ocean-atmosphere CO2 fluxes at the Cabo Frio upwelling system region, Southwestern Atlantic Ocean. Cont Shelf Res 181:135–142. https://doi.org/10.1016/j.csr.2019.05.008

    Article  Google Scholar 

  • Orselli IBM, Kerr R, Ito RG, Tavano VM, Mendes CR, Garcia CAE (2018) How fast is the Patagonian shelf-break acidifying? J Mar Syst 178:1–14

    Article  Google Scholar 

  • Pezzi LP, Souza RB, Acevedo O, Wainer I, Mata MM, Garcia CAE, Camargo R (2009) Multi-year measurements of the oceanic and atmospheric boundary layers at the Brazil–Malvinas confluence region. J Geophys Res 114:D19103. https://doi.org/10.1029/2008JD011379

    Article  Google Scholar 

  • Pierrot D, Lewis E and Wallace D (2006). CO2SYS Dos program developed for CO2 system calculations. ORNL/CDIAC-105. Oak Ridge, TN: Carbon dioxide information analysis center; Oak Ridge National Laboratory; US Deparstment of Energy

  • Pierrot D, Neil C, Sullivan K, Castle R, Wanninkhof R, Lueger H (2009) Recommendations for autonomous underway pCO2 measuring systems and data reduction routines. Deep Sea Res II 56:512–522. https://doi.org/10.1016/j.dsr2.2008.12.005

    Article  Google Scholar 

  • Piola AR, Martínez Avellaneda N, Guerrero RA, Jardón FP, Palma ED, Romero SI (2010) Malvinas-slope water intrusions on the northern Patagonia continental shelf. Ocean Sci 6(1):345–359

    Article  Google Scholar 

  • Piola AR, Palma ED, Bianchi AA, Castro BM, Dottori M, Guerrero RA, Saraceno M (2018) Physical oceanography of the SW Atlantic Shelf: a review. Plankton ecology of the Southwestern Atlantic, pp 37–56

  • Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu Rev Mar Sci 3:291–315. doi: https://doi.org/10.1146/annurev-marine-120709-142720

    Article  Google Scholar 

  • Rixen T, Ittekkot V (2005) Nitrogen deficits in the Arabian Sea, implications from a three-component mixing analysis. Deep-Sea Res II 52:1879–91

    Article  Google Scholar 

  • Rodrigues RR, Lorenzzetti JA (2001) A numerical study of the effects of bottom topography and coastline geometry on the southeast Brazilian coastal upwelling. Cont Shelf Res 21:371–394

    Article  Google Scholar 

  • Roobaert A, Laruelle GG, Landschützer P, Regnier P (2018) Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis. Biogeosciences 15:1701–1720. https://doi.org/10.5194/bg-15-1701-2018

    Article  Google Scholar 

  • Saeck EA, O’brien KR, Weber TR, Buford MQ (2013) Changes to chronic nitrogen loading from sewage discharges modify standing stocks of coastal phytoplankton. Mar Pollution Bull 71:159–167

    Article  Google Scholar 

  • Shadwick EH, Thomas H (2011) Carbon dioxide in the coastal ocean: a case study in the Scotian Shelf region. The ocean year book, vol 25. Martinus Nijhoff, Boston

    Google Scholar 

  • Soares I, Möller Jr O (2001) Low-frequancy currents and water mass spatial distribution on the southern Brazilian shelf. Cont Shelf Res 21:1785–1814

    Article  Google Scholar 

  • Souza MS, Mendes CRB, Tavano VM, Brotas V, Pollery RC (2011) Phyto-plankton communityduring a Coccolithophorid bloom in the Patagonian shelf: microscopic and HPLC pigment analyses. J Marine Biol Assoc UK 92(01):13–27. https://doi.org/10.1017/S0025315411000439

    Article  Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Nojiri Y (2002) Global sea—air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res II 49(9–10):1601–1622. https://doi.org/10.1016/S0967-0645(02)00003-6

    Article  Google Scholar 

  • Takao S, Nakaoka S-I, Hashihama F, Shimada K, Yoshikawa-Inoue H, Hirawake T, Kanda J, Hashida G, Suzuki K (2020) Effects of phytoplankton community composition and productivity on sea surface pCO2 variations in the Southern Ocean. Deep-Sea Res I 160:103263. https://doi.org/10.1016/j.dsr.2020.103263

    Article  Google Scholar 

  • Tenenbaum DR, Menezes M, Viana SdeC, Mendes MCdeQ, Eduardo J, Hatherly MMF (2006) Dinoflagelados e tintinídeos da região central da Zona Econômica Exclusiva brasileira: guia de identificação. Museu Nacional, Rio de Janeiro. Os Dinoflagelados. In: Tenenbaum DR (ed) Dinoflagelados e Tintinídeos da região central da Zona Ecoômica Exclusica brasileira: Guia de identificação. Museu Nacional—Universidade Federal do Rio de Janeiro, Rio de Janeiro, pp 35–163

    Google Scholar 

  • Terlouw GJ, Knor LACM, De Carlo EH, Drupp PS, Mackenzie FT, Li YH, Sutton AJ, Plueddemann AJ, Sabine CL (2019) Hawaii coastal seawater CO2 network: a statistical evaluation of a decade of observations on tropical coral reefs. Front Mar Sci 6:226. https://doi.org/10.3389/fmars.2019.00226

    Article  Google Scholar 

  • Thomas H, Bozec Y, Elkalay K, de Baar HJW, Borges AV, Schiettecatte L-S (2005) Controls of the surface water partial pressure of CO2 in the North Sea. Biogeosciences 2:323–334

    Article  Google Scholar 

  • Ulibarrena J, Conzonno VH (2015) Mechanisms involved in the proliferation and distributionof phytoplankton in the Patagonian sea, Argentina, as revealed by remotesensing studies. Environ Earth Sci 74:439–449. https://doi.org/10.1007/s12665-015-4052-0

    Article  Google Scholar 

  • Villac MC, Cabral-Noronha VA, Oliveira Pinto T (2008) The phytoplankton biodiversity of the coast of the state of São Paulo, Brazil. Biota Neotrop 8:151–173. https://doi.org/10.1590/s1676-06032008000300015

    Article  Google Scholar 

  • Wanninkhof R (2014) Relationship between wind speed and gas exchange over the oceanrevisited. Limnol Oceanogr 12:351–362. https://doi.org/10.1029/92JC00188

    Article  Google Scholar 

  • Watermann F, Hillebrand H, Gerdes G, Krumbein WE, Sommer U (1999) Competition betweenbenthic cyanobacteria and diatoms as influenced by different grain sizes andtemperatures. Mar Ecol Prog Ser 187:77–87

    Article  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215

    Article  Google Scholar 

  • Wright SW, Ishikawa A, Marchant HJ, Davidson AT, Van Den Enden RL, Nash GV (2009) Composition and significance of picophytoplankton in Antarctic waters. Polar Biol 32:797–808. https://doi.org/10.1007/s00300-009-0582-9

    Article  Google Scholar 

  • Zapata M, Rodríguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45. https://doi.org/10.3354/meps195029

    Article  Google Scholar 

  • Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D (2008) Global phylogeography of marine Synechococcus, and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–116

    Google Scholar 

Download references

Funding

This study is part of the activities of the Brazilian High Latitude Oceanography Group (GOAL; www.goal.furg.br), the Brazilian Ocean Acidification Network (BrOA; www.broa.furg.br), and the CARBON Team (www.carbonteam.furg.br). The cruises in this study were sponsored by the Brazilian National Council for Scientific and Technological Development (CNPq Grant Nos. 558267/2009-2, 445506/2014-8, and 443258/2019-8), the Foundation of Research Support to the State of Rio Grande do Sul (FAPERGS Grant Nos. 2075–2551/13−7 and 19/2551-0001734-0), and the Brazilian Federal Agency for Coordination of Improvement of Higher Education Personnel (CAPES Grant No. 23038.001421/2014–30), with logistics supported by the Ministry of Science, Technology, and Innovation (MCTI); Brazilian Secretariat of the Interministerial Commission for the Sea Resources (SECIRM); Brazilian Antarctic Program (PROANTAR); and Brazilian Navy. A.C.O.C. acknowledges the CAPES PhD Grant No. 88887.569121/2020-00. R.K. and C.R.B.M acknowledge the CNPq researcher Grant Nos. 304937/2018-5 and 306899/2018-3, respectively. We thank CAPES for providing the resources to the Graduate Program of Oceanology and the project CAPES Print from FURG. We thank all researchers and students who were involved in the cruises for their contribution to cruise sampling and analysis. We also wish to acknowledge the invaluable support of different cruise crews for their logistical assistance and two anonymous reviewers, who helped improve the manuscript substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréa da Consolação de Oliveira Carvalho.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Marguerite A. Xenopoulos.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 75 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Carvalho, A., Kerr, R., Tavano, V.M. et al. The southwestern South Atlantic continental shelf biogeochemical divide. Biogeochemistry 159, 139–158 (2022). https://doi.org/10.1007/s10533-022-00918-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-022-00918-8

Keywords

Navigation