Many analytical methods applied in our study (e.g. NMR and XANES spectroscopy, Hedley P fractionation, determination of isotopic exchange kinetics) are costly and/or time demanding, preventing the analysis of replicate profiles at each study site. Therefore, our paper unfortunately does not allow for statistical analysis of soil P status differences among the various sites. Nevertheless, we think that our paper presents a lot of novel important information on the P status of soils with carbonate parent material, regarding effects of pedogenesis, bedrock carbonate purity, and differences to soils with silicate parent materials.
Changes of P stock, P speciation, and ecosystem P nutrition in soils on carbonate bedrock with progressing pedogenesis
Soils TUT SW (shallow Rendzic Leptosol), TUT NE (Rendzic Leptosol with more advanced pedogenesis and a BA horizon), and BAE (Cambisol with thick B horizon) are located within 16 km distance from each other. They have similar parent material, climate, and forest vegetation (Table 1), but represent a series of progressing pedogenesis. Whereas the two Leptosols have developed after the last Pleistocene glaciation, and their age is < 12,000 years, Cambisol BAE is pre-Pleistocene and has an age of at least 2.5 Ma (Stahr and Böcker 2014). This sequence provides novel information on changes in P stock and P speciation in carbonate soils with pedogenesis. In contrast to the chronosequences on silicate parent material studied by Walker and Syers (1976), the limestone soils showed increasing fine earth P stocks (Fig. 9) with increasing soil age and progressing pedogenesis (shallow Rendzic Leptosol Cambisol). The increase in fine earth P stock was mostly caused by an increase in soil depth, formation of subsoil horizons, and fine earth (i.e. insoluble limestone dissolution residue + SOM) accumulation (Fig. 1). Stocks of P bound in stones and grit within the profile were decreasing faster with progressing pedogenesis than fine earth P stocks were increasing, indicating overall ecosystem P losses during pedogenesis also on carbonate sites, as shown before for silicate sites (Walker and Syers 1976; Lajtha and Schlesinger 1988; Crews et al. 1995; Chen et al. 2015). In line with the concept of Walker and Syers (1976), stocks of lithogenic Ca-bound P and the relative contribution of Ca-bound P to total soil P decreased with progressing pedogenesis (Fig. 9b). Yet, in contrast to their study, where Ca-bound P was completely lost in glacier forefield moraines after 22,000 years of soil formation under cool temperate climate, at BAE even after > 2.5 Ma of pedogenesis under different (humid, cold-arid, tropical) climate regimes, limestone rock fragments and Ca-bound P were still present in the Bw horizons at 50 cm depth (Fig. 1; Table 1). We assume that despite its plateau position with an inclination of only 2% BAE has lost a considerable portion of its pre-Pleistocene topsoil by solifluction during the Pleistocene. Forest vegetation colonizing the site in the early Holocene therefore could access and mine the underlying limestone rock, which was present at a depth < 60 cm, well within the rooting zone of forest trees, for P. At present, 15% of total P in the Ah horizon of BAE is Ca-bound Porg (Ca-IHP), probably indicating steady combined input of Ca and P with litter into the acidified topsoil (Clarholm and Skyllberg 2013).
Advancing limestone weathering, pedogenesis, and topsoil acidification in our chronosequence resulted in a decrease of Ca-bound soil P by dissolution of inorganic and organic Ca phosphates as well as accumulation of Al- and Fe-rich limestone dissolution residue, including Al and Fe oxyhydroxides. Stocks of Fe-bound P and their contribution to total soil P in our limestone-derived soils reached a maximum at intermediate stages of pedogenesis. According to the XANES results, in the old Cambisol BAE Al-bound P dominated over Fe-bound P, indicating that ultimately gibbsite and kaolinite were more important for soil P retention and storage than goethite and hematite. Yet, the majority of soil P in BAE was organic (Fig. 9a), and P K-edge XANES may have erroneously identified a considerable portion of Porg bound to Fe oxyhydroxides as Al-bound P (Prietzel and Klysubun 2018). Combination of the information retrieved by wet-chemical digestion, XANES, and Hedley fractionation (Fig. 9a-c) indicated that most of the P termed “occluded P” by Walker and Syers (1976), and “stable P” by Hedley et al. (1982) was Al- or Fe-bound Porg. The latter was most likely occluded in, strongly adsorbed to, and/or co-precipitated with Al and Fe oxyhydroxides. Overall, pedogenesis in limestone soils has resulted in a long-term change from recycling to acquiring ecosystem P nutrition (Table 7), suggesting that the small (moderately) labile P stock (84 g m−2) in the BAE profile is a sufficiently large pool of ecosystem-available P for an acquiring P nutrition strategy of the beech forest at BAE. In summary, these results indicate that, in contrast our hypothesis (1), the concept of Walker and Syers (1976) is only partially valid for soils derived from carbonate parent material (e.g. soil P speciation change from Ca-bound P to Al- and Fe-bound P forms with progressing pedogenesis), and must be refuted in many aspects (decrease of total soil P, inorganic P, and labile, plant-available P stocks with progressing pedogenesis).
Carbonate rock purity as key factor affecting soil P status and ecosystem P nutrition
Carbonate parent materials exist with different purity, i.e. in addition to the dominating (Ca, Mg, [Fe, Mn]) carbonates, other elements like Al, K, Na, Ca, Mg, Fe (in accessory silicate minerals) or Fe, Al, Mn (in accessory oxyhydroxide minerals) may be admixed to or co-precipitated. A well-known example is the increasing share of silicate in the sequence limestone – marl limestone – marl – marl mudstone (Blatt and Tracy 1996). Moreover, P contents of carbonate parent materials vary strongly on the global scale (Porder and Ramanchandran 2013), but also on regional and local scales (Table S1). Thus, soils formed from carbonate parent material may exhibit low and high P contents, respectively (Schubert 2002). Additionally, rates of mineral weathering, accumulation of insoluble residues, and soil formation are strongly affected by carbonate parent material purity. Profile SCH differed from the other soils by a markedly smaller parent material carbonate content of only 52% (Table S1) compared to at least 95% in the other soils. Furthermore, the parent material P content at SCH with 275 µg g−1 was about twice as high as at the other carbonate sites (140–150 µg g−1) except for TUT NE (650 µg g−1). At SCH, rapid weathering of P- and Fe-rich parent material resulted in formation of 80 cm thick Bw horizons (Table 1) with large stocks of SRO Fe minerals (ferrihydrite) within only 12,000 years. These minerals stored large Porg and Pinorg stocks (Fig. 2) by strong adsorption, occlusion, and probably also as stable ternary ferrihydrite–PO4–Ca complexes (Mendez and Hiemstra 2020). This resulted in small pools of labile P (Fig. 5), low P availability for beech trees (foliar P content 1.13 mg g−1; Table 1) and particularly for soil microorganisms (Cmic/Pmic ratio in the Ah horizon: 51; Table 4). We therefore assume that the predominating P-recycling ecosystem nutrition strategy (ENIP = –0.4; Table 7) at SCH is largely mediated by the O and Ah horizons. Also the dolostone rock at the S-exposed slope at MAN (95% carbonate) differed from that at the N-exposed slope (99.6% carbonate) by a markedly larger contribution of non-carbonate compounds (Table S1): Silicon and Al contents were 100 times higher; Fe and K contents were 30 times higher. Yet, both parent materials had almost identical P contents. The increased portion of non-carbonate minerals in the parent rock of the S-exposed profiles resulted (Table 1) in elevated soil contents of total Al, Fe, and K as well as in advanced pedogenesis, as indicated by elevated contents of dithionite- and oxalate-extractable Fe and Al. At MAN S1, even a Cambisol with a B horizon has formed within < 12,000 years similar to a Cambisol described by Biermayer and Rehfuess (1985) for a forest site on dolostone rock at 14 km distance. Moreover, and in contrast to the other dolostone sites, P ecosystem nutrition at MAN S1 had a P-acquiring component in addition to the dominating P-recycling (ENIP: –0.6; other dolostone sites: ENIP: < < –1; Table 7).
The parent material of profile TUT NE differs from that of its SW-exposed counterpart, and also from the pure (> 95%) carbonate parent materials of the other study sites by a more than four times larger P content (650 instead of 150 mg P kg−1; Table 1). Consequently, soil P contents (Fig. 1) and stocks (Fig. 2) in profile TUT NE were considerably larger than in TUT SW. The lower carbonate content in the parent rock of TUT NE compared to TUT SW was accompanied by three times larger Si, Al, Fe, and K contents (Table S1). This resulted in accelerated pedogenesis, formation of a BA horizon, and lower pH values (Table 1) in TUT NE compared to TUT SW. These results demonstrate the great importance of the parent material P content for the soil P status on carbonate sites.
Comparison of sites with carbonate vs. silicate parent material
Soil P status (detailed version in Supplementary Information)
(1) Soil P stocks: Total P stocks of the carbonate soils were at the level of the P-poor soils on silicate parent materials (Fig. 2). This can be partly attributed to the low P content of carbonate parent materials, particularly those of high purity, compared to most silicate parent materials (Porder and Ramanchandran 2013). Moreover, chemical weathering of carbonate parent material proceeds much slower than silicate weathering, resulting in low lithogenic P input and low soil accumulation rates of P-retaining sesquioxides and clay minerals. A large part of the P stock in the carbonate forest soils was bound in forest floor SOM. This finding emphasizes the importance of O layer conservation for ecosystem P supply (Ewald 2000; 2005; Prietzel and Ammer 2008; Mellert and Ewald 2014). The relevance of the forest floor to soil P storage and ecosystem P nutrition at carbonate sites decreases with progressing pedogenesis and accumulation of mineral soil material. However, in Central Europe, the Pleistocene glaciations, with few local exceptions, were associated with either complete removal of pre-Pleistocene soils, followed by a reset of pedogenesis in the Holocene, or their conversion into mixed carbonate–silicate soils by (peri)glacial admixing of allochthonous parent materials (e.g. loess, till). Thus, mature soils that have formed solely by dissolution of carbonate bedrock and accumulation of non-carbonate residue, such as the BAE Cambisol, are extremely rare in Central Europe.
(2) Soil P speciation: In the carbonate-derived soils, a larger portion of total P than in the silicate-derived soils is Ca-bound organic P (Fig. 2). This is probably largely caused by impeded enzymatic cleavage of Ca-Porg precipitates (mostly inositol hexaphosphate [IHP] monoesters; Fig. 6; Turner et al. 2002; Wang et al. 2020). Consequently, diester-P/monoester-P ratios were strongly decreased in the carbonate compared to the silicate soils. In summary, our results generally support hypothesis (2) that beech forest soils formed from carbonate rocks differ from those formed from silicate parent material regarding P stocks and P speciation. In general, P stocks of carbonate soils are lower than those of silicate soils, and the dominant P species comprise Porg-Ca associations and a high share of monoester-P, while in silicate soils diester-P and Porg-Fe/Al associations are of larger relevance.
(3) Plant and ecosystem P availability: Low beech foliage P contents (Table 1) indicate poor ecosystem P availability at all carbonate sites. Moreover, stocks of plant-available oPO4 and Cmic/Pmic ratios in the carbonate soils were at the level of the P-poorest silicate soils CON and LUE (Fig. 5, Figure S1, Table 4, Table S5). Furthermore, phosphorus enrichment in microbial biomass relative to SOM was much lower in the carbonate than in the silicate soils (Table 4, Table S5). The poor ecosystem P availability of sites with initial carbonate soils is probably caused by strong P incorporation in sparsely soluble Ca–Porg precipitates. Ca-bound inositol phosphate is a hardly available P-bearing substrate for microorganisms and plants, resulting in P-rich SOM and large soil Porg stocks, whereas at the same time the P supply of soil microorganisms and trees is low.
Ecosystem P nutrition strategies of beech forests on carbonate vs. silicate sites
Insufficient P nutrition is a critical factor for growth and vitality of forests on carbonate soils (Ewald, 2000; 2005; Mellert and Ewald 2014). For P-poor silicate sites, Lang et al. (2017) showed that forest ecosystems cope with poor P supply by establishing particular traits of intensive ecosystem-internal P recycling. These traits include plant-internal P-reallocation, but also P recycling within the soil system, i.e. intensification of enzymatic P mobilization from SOM, followed by instantaneous re-uptake of mobilized P in the forest floor and the mineral topsoil. Our results in general and in particular the strongly negative ENIP indices (< –1.3; Table 7) suggest that the Rendzic Leptosols on dolostone at MAN were characterized by the same soil traits as at the P-poor silicate sites, i.e. pronounced ecosystem P recycling. The accumulation of thick forest floor layers at MAN, associated with large values of the P-recycling indicators N4 and N7, was probably caused by the cold and humid site climate (Prietzel et al. 2016c). Ecosystem P acquisition from lithogenic sources as shown for the silicate sites MIT and CON by Uhlig et al. (2020) was probably restricted at MAN by low parent material P contents and weathering rates. Thus, at MAN forest floor degradation caused by forest disintegration due to climate warming (Prietzel et al. 2016c) or ungulate pressure (Prietzel and Ammer 2008) results in aggravated ecosystem P shortage and marked changes of soil microorganism communities and nutrient turnover pathways.
To date, ecosystem P nutrition data for forests on initial carbonate soils are lacking. We assume that, similar to silicate sites (Giguet-Covex et al. 2013; Prietzel et al. 2013), also the continuously recycling ecosystem P stock in Rendzic Leptosols had been acquired from lithogenic sources, i.e. by chemical rock weathering, and atmospheric sources, such as mineral dust (Küfmann 2006) and SOM (Zöttl 1965) during initial soil formation and ecosystem succession immediately after deglaciation in the early Holocene. In this context, it is important that hyphae of mycorrhiza and other fungi, but also free soil microorganisms directly access and mine stones and rocks for P (Hinsinger 2001; Stock et al. 2021; Pastore et al. 2022). However, as described in Sect. Soil P status (detailed version in Supplementary Information), soil P input rates by chemical and biological mineral weathering at sites on P-poor carbonate parent material probably are much lower than those at sites on silicate parent material with higher P contents. Thus, it can be assumed that forest ecosystems on initial carbonate soils (similar to those developing on P-poor, quartz-rich silicate parent material) shift from a P-acquiring into a P-recycling nutrition strategy as soon as reasonable amounts of P-containing SOM have been accumulated. In contrast, forests on P-rich silicate parent material may rely for longer time on the P-acquiring nutrition strategy. The systematic change from a predominantly P-acquiring to a predominantly P-recycling nutrition strategy along the geosequence BBR (ENIP: 1.0) / MIT (0.4) / VES (–0.1) / CON (–0.6) / LUE (–1.0) (Table 7) with decreasing substrate P content (Lang et al., 2017) and soil P stocks (Fig. 8c) may reflect a snapshot taken 12,000 years after onset of soil formation and forest ecosystem succession (Fig. 10). The transformation from initially P-acquiring to ultimately P-recycling nutrition depicted in Fig. 10 is probably caused by accumulation of P-bearing SOM in the forest floor and the mineral topsoil and concomitant gradual replacement of bedrock by P-depleted silicate weathering products (the non-SOM mineral soil fraction) during pedogenesis. Fine earth P contents in the Bw horizons of the profiles BBR, MIT, VES, CON, and LUE 12,000 years after onset of pedogenesis were 2.0, 0.9, 1.0, 0.4, and 0.2 mg P g−1, respectively (Lang et al. 2017), which is only 71%, (exception MIT 141%), 43%, 48%, and 50% of the P contents in the respective parent materials (Table S1). The P depletion of the silicate subsoils was probably mainly caused by root P uptake, i.e. the initially dominating P-acquiring ecosystem nutrition at all silicate sites.
According to their markedly negative ENIPs, ecosystem P nutrition at all dolostone sites and the limestone site TUT NE was dominated by P recycling rather than P acquisition, and a high relevance of soil Porg turnover for ecosystem P nutrition, similar to the P-poor silicate sites CON and LUE, thus supporting hypothesis (2). Yet, we assume that the major pathways of P recycling differ between silicate and carbonate soils at early stages of pedogenesis. At P-poor silicate sites, the prevailing ecosystem P nutrition strategy is characterized by direct biotic recycling of SOM-bound Porg, which probably is mainly exerted via enzymatic cleavage of SOM-PO4 bonds and subsequent uptake of the released oPO4 by plant roots, mycorrhiza fungi, and soil microorganisms. In contrast, recycling pathways of SOM-bound P in carbonate soils at early stages of pedogenesis have to include the dissolution of stable Ca-Porg (mostly Ca-IHP) precipitates and/or mobilization of calcite-adsorbed IHP (Celi et al. 2000) that had been formed from IHP released during SOM decomposition. Likely because of the continuous re-supply of Ca2+ from weathering rock, and unlike at the silicate sites, Ca-Porg compounds accumulate and constitute the majority of soil P in carbonate soils with an early stage of pedogenesis (Fig. 2). The forest ecosystems on the Cambisols MAN S1 and SCH according to our results were also characterized by a predominantly recycling P nutrition strategy. However, ENIPs of –0.6 and –0.4, respectively (Table 7) indicate that P-acquiring processes, including microbial (Pastore et al. 2022) and plant uptake of rock and subsoil P at these sites to some extent contribute to ecosystem P nutrition, similar to the silicate site CON (ENIP –0.6; Table 7; Rodionov et al. 2020; Uhlig et al. 2020). It thus can be assumed, in a quantitative sense, that ecosystem P acquisition from lithogenic sources by plants and microorganisms is less effective in soils on P-poor carbonate bedrock (e.g. MAN; rock P content 150 mg kg−1) compared to most soils on silicate parent materials, which are richer in P (Table S1).
Intriguingly, site BAE with the oldest, pedogenetically most advanced soil in our study (Cambisol with an age > 2.5 Ma) showed the most positive ENIP (0.9) of all carbonate sites, indicating a predominating P-acquiring ecosystem nutrition strategy. In contrast to silicate sites, forest ecosystem P nutrition on sites with carbonate rock with progressing pedogenesis does obviously not shift systematically from an initial P-acquiring to a P-recycling strategy. Instead, it seems to reverse to a P-acquiring strategy in the “Cambisol phase” after a dominating P-recycling strategy in the previous “Rendzic Leptosol phase”. Of course, the representativeness of our result obtained for BAE has to be tested by future investigation of other old Cambisols formed from carbonate rock. Yet, the proposed ecosystem reversal from a predominantly P-recycling to a predominantly P-acquiring nutrition strategy on Cambisols formed from carbonate parent material, which is absent for Cambisols formed from silicate parent material, can be reasonably explained by the different processes responsible for Bw horizon formation in the respective Cambisols. As reported above, at silicate sites, a key pedogenetic process in the formation of Cambisols with Bw horizons is gradual replacement of P-rich silicate rock material by P-poorer silicate weathering products (Fig. 11, lower panels). This P depletion is probably mainly caused by selective apatite dissolution and P mining by soil microorganisms, mycorrhiza fungi, and plant roots, followed by biological P uplift, incorporation of the mobilized P in biomass including partial P removal from the soil, P enrichment and P recycling in the Ah horizon, and to some extent also P losses with the seepage water (Sohrt et al. 2017).
In contrast, in the Cambisols MAN S1 and BAE, the carbonate rock dissolution residue which accumulates in the B horizons in the course of pedogenesis is not depleted, but enriched in P compared to the initial carbonate bedrock (Fig. 11, upper panels). Fine earth P contents in the B horizons of Cambisols MAN S1 and BAE were 0.4 and 0.5 mg P g−1 (Table 2), indicating a P enrichment by factor 3 (BAE) (Fig. 11) compared to the respective parent materials (P content 0.15 mg g−1; Table S1). This P enrichment is mainly caused by the circumstance that in contrast to silicate weathering, during weathering of pure carbonate rock in the course of Cambisol formation the vastly dominating portion of the original rock mass leaves the soil as mobile Ca2+, (Mg2+), and HCO3− with the seepage water. Soil P/rock P content ratios greater than 1 (Fig. 11) prove that lithogenic P (in the carbonate rock mostly present as finely dispersed apatite) which is mobilized in the course of carbonate dissolution, is significantly retained in the carbonate dissolution residue (Al and Fe oxyhydroxides, clay minerals, fine quartz fragments). Phosphorus thus becomes enriched in the weathering residue (rather than depleted as in the silicate soils) compared to the parent material.
TiO2 minerals (in soils mostly rutile) are very resistant to chemical weathering, and with progressive chemical weathering of rocks and soils TiO2 (and Ti) contents increase due to selective enrichment of these minerals (Milnes and Fitzpatrick 1989; Gupta and Rao 2001). The Ti content in different soil horizons can be used as index of past chemical weathering associated with losses of elements bound in less stable minerals (Sudom and Arnaud 1971; Milnes and Fitzpatrick 1989). Strongly increased Ti contents in the B horizons of the carbonate soils compared to the underlying rock (Fig. 11) indicate considerable historic losses of Ca, Mg, and carbonate during weathering and soil formation. Furthermore, increased P/Ti and P/Fe mass ratios in the Ah horizons of the carbonate soils compared to their respective subsoils (Fig. 11, Figure S4) suggest that plant P uplift leads to additional P topsoil enrichment. Balance calculations (explained in detail in the Supplementary Information) indicate that this phase is associated with ecosystem P leakiness and considerable P ecosystem losses – at least on a time scale of centuries or millennia. One important pathway in this context is P seepage water export. Thus, for a beech forest site with Rendzic Leptosols formed from dolostone in Northern Bavaria, Kaiser et al. (2003) reported an annual export of 40 mg P m−2 with the subsoil seepage water. This P export may add up to a total ecosystem loss of 400 g P m−2 during 10,000 years of Holocene soil formation, which is more than the total soil P stock in any carbonate soil in our study. Another important pathway of long-term ecosystem P losses is probably topsoil erosion (Alewell et al. 2020). All carbonate soils in our study, including the Cambisols, are characterized by considerable historical (BAE) and/or recent (top)soil erosion. According to its soil mineral composition (Stahr and Böcker 2014), BAE has largely developed in the Neogene (“Tertiary”), and presumably has lost part of its topsoil material by solifluction in the Pleistocene.
Very likely, the Bw horizon was thicker at the transition Neogene–Pleistocene than today. The entire time of pedogenesis considered, the average rate of soil formation by rock weathering, including complete dissolution of its carbonate fraction, both at MAN S1 as well as at BAE was higher than topsoil material losses by erosion; otherwise, in both profiles no Bw horizons would be present at all. During Bw horizon formation associated with pedogenetic transformation of a Rendzic Leptosol into a Cambisol, P is slowly (because of the low bedrock P content), but steadily released from the weathering carbonate rock into a new-formed deepest Bw horizon section. As explained before, the forest stands at MAN S1 and BAE during the Rendzic Leptosol stadium probably were strongly P-limited. Forest P nutrition depended on the recycling of P that had been acquired by the ecosystem during previous phases of soil formation, and then was stored and recycled in topsoil or forest floor SOM, litter, and plants as well as microbial biomass. At the same time, carbonate dissolution residue with high P content (3 mg g−1 P, exceeding even the P content of the basalt at the P-richest silicate site BBR; cf. calculation in Supplementary Information) was produced continuously at the boundary layer between the deepest Bw horizon and the carbonate bedrock (“weathering front”).
The P in the carbonate dissolution residue was most likely bound as Ca phosphate (Hinsinger 2001) and/or as ternary Fe oxyhydroxide–PO4–Ca complexes (Mendez and Hiemstra 2020). At more advanced stages of pedogenesis, soil pH also in the Bw horizon decreases to values below 6, and soil solution Ca2+ concentrations also decrease. Both processes result in P mobilization from secondary Ca-PO4 and Ca phytate precipitates (Hinsinger 2001) as well as remobilization of formerly adsorbed inorganic and organic P from dissolving carbonates (Celi et al.2000). Thus, in contrast to the Rendzic Leptosol stage of pedogenesis and ecosystem succession, during the Cambisol formation stage of pedogenesis, a large portion of the P that had been released into the soil during previous rock weathering becomes bio-available and probably is rapidly being acquired by plant roots and mycorrhiza fungi. At this stage, forest ecosystems on Cambisols formed from carbonate rock probably gradually (re-)change from a P-recycling into a P-acquiring system (Fig. 10). The additional P injected into the ecosystem P cycle by remobilization of inositol phosphate that had been precipitated as Ca phytate and/or adsorbed to carbonate surfaces in the Rendzic Leptosol stage of soil formation with advancing soil acidification probably markedly increases ecosystem P supply and productivity. Thus, with progressing pedogenesis, forests on carbonate parent material are turning into “pseudo-silicate” systems with (temporarily) high P supply and predominance of P-acquiring ecosystem nutrition. This situation is represented by site BAE, whose ENIP with 0.9 (Table 7) is almost as high as that of the P-richest silicate site BBR (1.0). However, plant root P acquisition from the Bw horizon, subsequent plant P uplift, and ultimate deposition of that P on and in the topsoil by litterfall and rhizodeposition result in gradual P depletion, and, thus, P content decrease of the Bw horizon. Simultaneously, with increasing ecosystem P supply P (re)cycling is becoming less tight, and the ecosystem becomes increasingly “leaky” with respect to P. As mentioned before, a major pathway of ecosystem P losses apart from erosion is probably P export with the soil seepage water, particularly as DOP and/or colloid-bound P rather than oPO4 (Kaiser et al. 2003; Wang et al. 2020). At the high-elevation site MAN with its steep mountain slopes, additionally plant litter and topsoil erosion, probably associated with snow gliding events (Prietzel 2010) contribute to ecosystem P losses. These P losses are continuously replaced by plant P acquisition in the Bw horizon, plant P uplift, and topsoil deposition of litter P, as long as subsoil P is available and rates of soil (Bw) formation and soil P input at the weathering front compensating are same or higher than (top)soil material and P losses. The positive ecosystem P balance at this stage of soil development results in a favorable ecosystem P nutrition status. This is consistent with reports that temperate forests on deep Cambisols formed from carbonate rock generally show good or excellent stand P nutrition (Rehfuess 1990).
In the long run, the positive material balance in developing Cambisols on carbonate rock (i.e. the balance of new formation of Bw material at the weathering front in the subsoil minus topsoil losses by erosion) will result in a continuously increasing thickness of the Bw horizon. Then the boundary layer, where P-poor carbonate rock weathers and leaves behind P-rich Bw material will gradually move further down both in absolute terms as well as relative to the soil surface. At some point in time, plant roots may hardly reach it. Ecosystem acquisition of lithogenic P then may become increasingly difficult. At this stage, continuous ecosystem P losses will be associated with progressive P depletion of the rooted soil, with the remaining P bound to soil Fe and Al oxyhydroxides being increasingly less available to plants and soil microorganisms. At this time, ecosystem P supply will deteriorate again, and the system will probably eventually return into P-recycling mode. The ultimate fate of forest ecosystems on soils formed from carbonate bedrock in terms of ecosystem P nutrition thus will be similar to that of forest ecosystems on silicate parent material.
We are aware that the carbonate sites in our study do not represent true chronosequences, and that the presented ENIp concept is a ranking tool rather than allowing for quantitative assessment of ecosystem P nutrition (see detailed discussion in the Supplementary Information). Nevertheless, the novel information gathered from our study indicates the validity of our hypothesis (3) that the concept of P-acquiring vs. P-recycling ecosystems developed for temperate forests at silicate sites by Lang et al. (2016; 2017) is also applicable for carbonate sites. Moreover, it led to the development of a conceptual model describing and comparing the change in forest ecosystem P nutrition strategies (i.e. the ENIp) on soils formed from calcareous vs. silicate parent material with time and progressing pedogenesis. Our model (Fig. 10) complements the fundamental models describing and explaining soil P and forest ecosystem change on sites with silicate parent material developed by Walker and Syers (1976), Wardle et al. (2004), and Turner et al. (2007; 2013). A novel key feature of our conceptual model is the presence of a second period of P-acquiring ecosystem nutrition in Cambisols formed from carbonate bedrock after an initial phase of dominating P-recycling nutrition when soils are less developed (Rendzic Leptosols). Even if our model may be modified or even refuted in future studies, our study for the first time presents detailed information of soil P and forest ecosystem changes on sites with carbonate parent material, which support large forest areas.