Abstract
The carbonate chemistry was investigated in the semiarid eutrophic Araruama Lagoon (Brazil), one of the largest hypersaline coastal lagoons in the world. Spatial surveys during winter and summer periods were performed, in addition to a diurnal sampling in summer. The hypersaline waters have higher concentrations of total alkalinity (TA) and dissolved inorganic carbon (DIC) than the seawater that feed the lagoon, due to evaporation. However, TA and DIC concentrations were lower than those expected from evaporation. Calcium carbonate (CaCO3) precipitation partially explained these deficits. The negative correlation between the partial pressure of CO2 (pCO2) and chlorophyll a (Chl a) indicated that DIC was also consumed by primary producers. The uptake by photosynthesis contributes to 57–63% of DIC deviation from evaporation, the remaining credited to CaCO3 precipitation. Marked pCO2 undersaturation was prevalent at the innermost region with shallow, confined, and phytoplankton-dominated waters, with a strong enrichment of heavier carbon isotope (δ13C-DIC up to 5.55‰), and highest pH (locally counter-acting the process of ocean acidification). Oversaturation was restricted to an urbanized region, and during night-time. The lagoon behaved as a marked CO2 sink during winter (− 15.32 to − 10.15 mmolC m−2 day−1), a moderate sink during summer (− 5.50 to − 4.67 mmolC m−2 day−1), with a net community production (NCP) of 93.7 mmolC m−2 day−1 and prevalence of net autotrophic metabolism. A decoupling between CO2 and O2 exchange rate at the air–water interface was attributed to differences in gas solubility, and high buffering capacity. The carbonate chemistry reveals simultaneous and antagonistic actions of CaCO3 precipitation and autotrophic metabolism on CO2 fluxes, and could reflect future conditions in populated and semiarid coastal ecosystems worldwide.
This is a preview of subscription content, access via your institution.









References
Abril G, Frankignoulle M (2001) Nitrogen—alkalinity interactions in the highly polluted Scheldt Basin (Belgium). Water Res 35:844–850. https://doi.org/10.1016/S0043-1354(00)00310-9
Abril G, Etcheber H, Delille B, Frankignoulle M, Borges AV (2003) Carbonate dissolution in the turbid and eutrophic Loire estuary. Mar Ecol-Prog Ser 259:129–138. https://doi.org/10.3354/meps259129
Abril G, Libardoni B, Brandini N, Cotovicz LC Jr, Medeiros PR, Cavalcante G, Knoppers BA (2021) Thermodynamic uptake of atmospheric CO2 in the oligotrophic and semiarid São Francisco estuary (NE Brazil). Ma Chem 233:103983. https://doi.org/10.1016/j.marchem.2021.103983
Amarante OA, Silva FJ, Rios Filho LG (2002) Atlas Eólico, Estado do Rio de Janeiro. Secretaria de Estado da Energia, da Indústria Naval e do Petróleo, Rio de Janeiro. http://www.cresesb.cepel.br/publicacoes/download/atlas_eolico/AtlasEolicoRJ.pdf. Accessed 25 Apr 2021
Anthony A, Atwood J, August P et al (2009) Coastal lagoons and climate change: ecological and social ramifications in US Atlantic and Gulf coast ecosystems. Ecol Soc 14(1):8
Ávila-López MC, Hernández-Ayón JM, Camacho-Ibar VF et al (2016) Air-Water CO2 fluxes and net ecosystem production changes in a Baja California coastal lagoon during the anomalous North Pacific warm condition. Estuar Coast 40:792–806. https://doi.org/10.1007/s12237-016-0178-x
Babel M, Schreiber C (2014) Geochemistry of evaporites and evolution of seawater. In: Mackenzie F (ed) Treatise on geochemistry sediments, diagenesis, and sedimentary rocks. Elsevier, Amsterdam, pp 483–560
Barbiére EB, Monteiro CA (1974) Ritmo climático e extração do sal em Cabo Frio. Rev Bras Geogr 37:23–109
Benson BB, Krause D (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29:620–632. https://doi.org/10.4319/lo.1984.29.3.0620
Bertucci CT, Silva EP, Marques Junior AN, Monteiro Neto C (2016) Tourism and urbanization: environmental problems of the Araruama Lagoon, state of Rio de Janeiro, Brazil. Ambient Soc 19:59–80. https://doi.org/10.1590/1809-4422ASOC137111V1942016
Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 26:3–27. https://doi.org/10.1007/BF02732750
Borges AV, Abril G (2011) Carbon dioxide and methane dynamics in estuaries. In: McLusky D, Wolanski E (eds) Treatise on estuarine and coastal science. Academic Press, Amsterdam, pp 119–161
Borges AV, Frankignoulle M (2002) Distribution and air-water exchange of carbon dioxide in the Scheldt plume off the Belgian coast. Biogeochemistry 59:41–67. https://doi.org/10.1023/A:1015517428985
Breaux N, Lebreton B, Palmer TA, Guillou G, Pollack JB (2019) Ecosystem resilience following salinity change in a hypersaline estuary. Estuar Coast Shelf Sci 225(30):106258. https://doi.org/10.1016/j.ecss.2019.106258
Burke CM, Atkinson MJ (1988) Measurement of total alkalinity in hypersaline waters: values of fH. Mar Chem 25:49–55. https://doi.org/10.1016/0304-4203(88)90014-X
Cai W-J, Pomeroy LR, Moran MA, Wang Y (1999) Oxygen and carbon dioxide mass balance for the estuarine–intertidal marsh complex of five rivers in the southeastern U.S. Limnol Oceanogr 44:639–649. https://doi.org/10.4319/lo.1999.44.3.0639
Cai W-J, Hu X, Huang W-J et al (2011) Acidification of subsurface coastal waters enhanced by eutrophication. Nat Geosci 4:766–770. https://doi.org/10.1038/ngeo1297
Cai W-J, Feely RA, Testa JM et al (2020) Natural and anthropogenic drivers of acidification in large estuaries. Annu Rev Mar Sci 13:23–55. https://doi.org/10.1146/annurev-marine-010419-011004
Cao Z, Yang W, Zhao Y et al (2020) Diagnosis of CO2 dynamics and fluxes in global coastal oceans. Nat Sci Rev 7:786–797. https://doi.org/10.1093/nsr/nwz105
Champenois W, Borges AV (2021) Net community metabolism of a Posidonia oceanica meadow. Limnol Oceanogr. https://doi.org/10.1002/lno.11724
Chen C-TA, Huang T-H, Chen Y-C, Bai Y, He X, Kang Y (2013) Air–sea exchanges of CO2 in the world’s coastal seas. Biogeosciences 10:6509–6544. https://doi.org/10.5194/bg-10-6509-2013
Chen B, Cai W-J, Chen L (2015) The marine carbonate system of the Arctic Ocean: assessment of internal consistency and sampling considerations, summer 2010. Mar Chem 176:174–188. https://doi.org/10.1016/j.marchem.2015.09.007
Chen B, Cai W-J, Brodeur JR et al (2020) Seasonal and spatial variability in surface pCO2 and air–water CO2 flux in the Chesapeake Bay. Limnol Oceanogr 65:3046–3065. https://doi.org/10.1002/lno.11573
Chou C, Neelin JD, Chen C-A, Tu JY (2009) Evaluating the rich-get-richer mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005. https://doi.org/10.1175/2008JCLI2471.1
Cloern JE, Foster SQ, Kleckner AE (2014) Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11:2477–2501. https://doi.org/10.5194/bg-11-2477-2014
Cohen Y, Krumbein WE, Shilo M (1977) Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol Oceanogr 22(4):609–620. https://doi.org/10.4319/lo.1977.22.4.0609
Cotovicz LC Jr, Knoppers BA, Brandini N, Costa Santos SJ, Abril G (2015) A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeosciences 12:6125–6146. https://doi.org/10.5194/bg-12-6125-2015
Cotovicz LC, Libardoni BG, Brandini N, Knoppers BA, Abril G (2016) Comparações entre medições em tempo real da pCO2 aquatica com estimativas indiretas em dois estuários tropicais contrastantes: o estuário eutrofizado da Baia de Guanabara (RJ) e o estuário oligotrofico do Rio São Francisco AL. Quim Nov 39(10):1206–1214. https://doi.org/10.21577/0100-4042.20160145
Cotovicz LC Jr, Knoppers BA, Deirmendjian L, Abril G (2019) Sources and sinks of dissolved inorganic carbon in an urban tropical coastal bay revealed by δ13C-DIC signals. Estuar Coast Shelf Sci 2020:185–195. https://doi.org/10.1016/j.ecss.2019.02.048
Cotovicz LC Jr, Vidal LO, de Rezende CE, Bernardes MC, Knoppers BA, Sobrinho RL, Cardoso RP, Muniz M, dos Anjos RM, Biehler A, Abril G (2020) Carbon dioxide sources and sinks in the delta of the Paraíba do Sul River (Southeastern Brazil) modulated by carbonate thermodynamics, gas exchange and ecosystem metabolism during estuarine mixing. Mar Chem 226:103869. https://doi.org/10.1016/j.marchem.2020.103869
Cotovicz LC Jr, Ribeiro RP, Régis CR et al (2021) Greenhouse gas emissions (CO2 and CH4) and inorganic carbon behavior in an urban highly polluted tropical coastal lagoon (SE, Brazil). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13362-2
Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Res I Oceanogr Res Pap 37:755–766. https://doi.org/10.1016/0198-0149(90)90004-F
Dickson AG (2010) The carbon dioxide system in seawater: equilibrium chemistry and measurements. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (eds) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, pp 17–40
Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743. https://doi.org/10.1016/0198-0149(87)90021-5
Egleston ES, Sabine CL, Morel FMM (2010) Revelle revisited: buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob Biogeochem Cycles 24:1–9. https://doi.org/10.1029/2008GB003407
Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmos Chem Phys 13(19):10081–10094. https://doi.org/10.5194/acp-13-10081-2013
Frankignoulle M (1994) A complete set of buffer factors for acid/base CO2 system in seawater. J Mar Syst 5:111–118
Frankignoulle M, Canon C, Gattuso J-P (1994) Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnol Oceanogr 39(2):458–462. https://doi.org/10.1016/0924-7963(94)90026-4
Frankignoulle M, Borges AV, Biondo R (2001) A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments. Water Res 35:1344–1347. https://doi.org/10.1016/S0043-1354(00)00369-9
Garcia HE, Gordon LI (1992) Oxygen solubility in seawater: better ftting equations. Limnol Oceanogr 37:1307–1312. https://doi.org/10.4319/lo.1992.37.6.1307
Gattuso J-P, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–434. https://doi.org/10.1146/annurev.ecolsys.29.1.405.1999
Gattuso J-P, Frankignoulle M, Smith SV (1999) Measurement of community metabolism and significance in the coral reef CO2 source-sink debate. Proc Natl Acad Sci USA 96:13017–13022. https://doi.org/10.1073/pnas.96.23.13017
Gillikin DP, Bouillon S (2007) Determination of δ18O of water and δ13C of dissolved inorganic carbon using a simple modification of an elemental analyzer-isotope ratio mass spectrometer: an evaluation. Rapid Commun Mass Spectrom 21:1475–1478. https://doi.org/10.1002/rcm.2968
Golan R, Gavrieli I, Ganor J, Lazar B (2016) Controls on the pH of hyper-saline lakes—a lesson from the Dead Sea. Earth Planet Sci Lett 434:289–297. https://doi.org/10.1016/j.epsl.2015.11.022
Gran G (1952) Determination of the equivalence point in potentiometric titrations-part II. Analyst 77:661–671. https://doi.org/10.1039/an9527700661
Howarth R (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9(1):18–26. https://doi.org/10.1890/100008
Huang W-J, Cai W-J, Wang Y, Lohrenz SE, Murrell MC (2015) The carbon dioxide (CO2) system on the Mississippi River-dominated continental shelf in the northern Gulf of Mexico—I: Distribution and air–sea CO2 flux. J Geophy Res 120:1429–1445. https://doi.org/10.1002/2014JC010498
Huang J, Li Y, Fu C et al (2017) Dryland climate change: recent progress and challenges. Rev Geophys 55:719–778. https://doi.org/10.1002/2016RG000550
Iglesias-Rodriguez MD, Armstrong R, Feely R et al (2011) Progress made in study of oceans calcium carbonate budget. Eos 83(34):365–375. https://doi.org/10.1029/2002EO000267
Isaji Y, Kawahata H, Kuroda J et al (2017) Biological and physical modification of carbonate system parameters along the salinity gradient in shallow hypersaline solar salterns in Trapani, Italy. Geochim Cosmochim Acta 208:354–367. https://doi.org/10.1016/j.gca.2017.04.013
Jähne B, Munnich KO, Bosinger R, Dutzi A, Huber W, Libner P (1987) On parameters influencing air-water exchange. J Geophys Res 92:1937–1949. https://doi.org/10.1029/JC092iC02p01937
Javor B (1989) Hypersaline environments. Microbiology and biogeochemistry. Brock/spring series in contemporary bioscience. Springer, Berlin
Jiang LQ, Cai W-J, Wang YC (2008) A comparative study of carbon dioxide degassing in river- and marine dominated estuaries. Limnol Oceanogr 53:2603–2615. https://doi.org/10.4319/lo.2008.53.6.2603
Kjerfve B (1994) Coastal Lagoons. In: Kjerfve B (ed) Coastal Lagoon processes, oceanography series, 1st edn. Elsevier, Amsterdam, pp 1–8
Kjerfve B, Schettini CAF, Knoppers B, Lessa G, Ferreira HO (1996) Hydrology and salt balance in a large hypersaline coastal lagoon: Lagoa de Araruama, Brazil. Estuar Coast Shelf Sci 42:701–725. https://doi.org/10.1006/ecss.1996.0045
Knoppers BA, Kjerfve B (1999) Coastal lagoons of Southeastern Brazil: physical and biogeochemical characteristics. In: Perillo G, Piccolo MC (eds) Estuaries of South America. Their morphology and dynamics. Springer, Berlin, pp 35–66
Knoppers BA, Souza WF, Souza MFL, Rodriguez EG, Landim ECV, Vieira AR (1996) In situ measurements of n benthic primary production, respiration and nutrient fluxes in a hypersaline coastal lagoon of SE, Brazil. Rev Bras Oceanogr 44:155–165. https://doi.org/10.1590/S1413-77391996000200005
Knoppers BA, Carmouze J-P, Moreira-Turcq PF (1999) Nutrient dynamics, metabolism and eutrophication of lagoons along the east Fluminense coast, state of Rio de Janeiro, Brazil. In: Knoppers BA, Bidone ED, Abrão JJ (eds) Environmental geochemistry of coastal lagoon systems of Rio de Janeiro, Brazil. FINEP, Rio de Janeiro, pp 123–154
Koné YJM, Abril G, Kouadio KN, Dellile B, Borges AV et al (2009) Seasonal variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa). Estuar Coast 32:246–260. https://doi.org/10.1007/s12237-008-9121-0
Körtzinger A (2003) A significant CO2 sink in the tropical Atlantic Ocean associated with the Amazon River plume. Geophys Res Lett 30:24. https://doi.org/10.1029/2003GL018841
Krumgalz S, Hoknung H, Oren OH (1980) The study of natural hypersaline lagoons in desert areas (the Bardawil Lagoon in northern Sinai). Estuar Coastal Mar Sci 10:403–415. https://doi.org/10.1016/S0302-3524(80)80120-4
Kubo A, Maeda Y, Kanda J (2017) A significant net sink for CO2 in Tokyo Bay. Sci Rep 7:44355. https://doi.org/10.1038/srep44355
Larsen TA, Hoffman S, Lüthi C, Truffer B, Maurer M (2016) Emerging solutions to the water challenges of an urbanizing world. Science 352:928–933. https://doi.org/10.1126/science.aad8641
Laruelle GG, Dürr HH, Lauerwald R et al (2013) Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol Earth Syst Sci 17:2029–2051. https://doi.org/10.5194/hess-17-2029-2013
Laut L, Vilar A, Belart P et al (2020) Organic matter compounds as a tool for trophic state characterization in a hypersaline environment: Araruama Lagoon, Brazil. J S Am Earth Sci 97:102403. https://doi.org/10.1016/j.jsames.2019.102403
Lazar B, Starinsky A, Katz A, Sass E, Ben-Yaakov S (1983) The carbonate system in hypersaline solutions: alkalinity and CaCO3 solubility of evaporated seawater. Limnol Oceanogr 28:978–986. https://doi.org/10.4319/lo.1983.28.5.0978
Lee K, Kim TW, Byrne RH et al (2010) The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim Cosmochim Acta 74:1801–1811. https://doi.org/10.1016/j.gca.2009.12.027
Lorenzen C (1967) Determination of chlorophyll and pheo-pigments: spectrophomometric equations. Limnol Oceanogr 12:343–346. https://doi.org/10.4319/lo.1967.12.2.0343
Maher DT, Eyre BD (2012) Carbon budgets for three autotrophic Australian estuaries: Implications for global estimates of the coastal air–water CO2 flux. Glob Biogeochem Cycle 26(GB1032):2012. https://doi.org/10.1029/2011GB004075
Maher DT, Call M, Macklin P, Webb JR, Santos IR (2019) Hydrological versus biological drivers of nutrient and carbon dioxide dynamics in a coastal Lagoon. Estuar Coast 42:1015–1031. https://doi.org/10.1007/s12237-019-00532-2
Marion GM, Millero FJ, Feistel R (2009) Precipitation of solid phase calcium carbonates and their effect on application of seawater SA-T-P models. Ocean Sci 5:285–291. https://doi.org/10.5194/os-5-285-2009
McCaffrey MA, Lazar B, Holland HD (1987) The evaporation path of seawater and the coprecipitation of Br− and K+ with halite. J Sediment Petrol 57:928–938. https://doi.org/10.1306/212f8cab-2b24-11d7-8648000102c1865d
McCutcheon MR, Staryk CJ, Hu X (2019) Characteristics of the carbonate system in a semiarid estuary that experiences summertime hypoxia. Estuar Coast 42:1509–1523. https://doi.org/10.1007/s12237-019-00588-0
Mehrbach C, Cuberson CH, Hawley JE, Pytkowicx RM (1973) Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907. https://doi.org/10.4319/lo.1973.18.6.0897
Middelburg JJ, Soetaert K, Hagens M (2020) Ocean alkalinity, buffering and biogeochemical processes. Rev Geophys 58:e2019RG000681. https://doi.org/10.1029/2019RG000681
Millero FJ (2007) The marine inorganic carbon cycle. Chem Rev 107:308–341. https://doi.org/10.1021/cr0503557
Miyajima T, Miyajima Y, Hanba YT, Yoshii K, Koitabashi T, Wada E (1995) Determining the stable isotope ratio of total dissolved inorganic carbon in lake water by GC/C/IIRMS. Limnol Oceanogr 40:994–1000. https://doi.org/10.4319/lo.1995.40.5.0994
Mook WG (2001) Environmental isotopes in the hydrological cycle: principles and applications. UNESCO, Paris
Moreira-Turcq P (2000) Impact of a low salinity year on the metabolism of a hypersaline coastal lagoon (Brazil). Hydrobiologia 429:133–140. https://doi.org/10.1023/A:1004037624787
Morse JW, He S (1993) Influences of T, S and pCO2 on the pseudo-homogeneous precipitation of CaCO3 from seawater: implications for whiting formation. Mar Chem 41:291–297. https://doi.org/10.1016/0304-4203(93)90261-L
Morse JW, Wang Q, Tsio MY (1997) Influences of temperature and Mg:Ca ratio on the mineralogy of CaCO3 precipitated from seawater. Geology 25:85–87. https://doi.org/10.1130/0091-7613(1997)025%3c0085:IOTAMC%3e2.3.CO;2
Morse JW, Arvidson RS, Lüttge A (2007) Calcium carbonate formation and dissolution. Chem Rev 107:342–381. https://doi.org/10.1021/cr050358j
Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am J Sci 283:780–799. https://doi.org/10.2475/ajs.283.7.780
Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219. https://doi.org/10.1080/00785236.1995.10422044
O’Mara NA, Dune JP (2019) Hot spots of carbon and alkalinity cycling in the coastal oceans. Sci Rep 9:4434. https://doi.org/10.1038/s41598-019-41064-w
Pages J, Lemoalle J, Fritz B (1995) Distribution of carbon in a tropical hypersaline estuary, the Casamance (Senegal, West Africa). Estuaries 18:456–468. https://doi.org/10.2307/1352364
Ramos-Régis C (2021) Avaliação do estado trófico da Laguna Hipersalina de Araruama e do Complexo Lagunar de Jacarepaguá (Rio de Janeiro). Master Dissertation, Federal Fluminense University
Regnier P, Friedlingstein P, Ciais P et al (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607. https://doi.org/10.1038/ngeo1830
Ribas-Ribas M, Hernández-Ayón JM, Camacho-Ibar VF et al (2011) Effects of upwelling, tides and biological processes on the inorganic carbon system of a coastal lagoon in Baja California. Estuar Coast Shelf Sci 95:367–376. https://doi.org/10.1016/j.ecss.2011.09.017
Robbins LL, Hansen ME, Kleypas JA, Meylan SC (2010) CO2 Calc: a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone), U.S. Geological Survey Open-File Report, 2010–1280, 1–17. http://pubs.usgs.gov/of/2010/1280/. Accessed 07 Dec 2020
Romanek C, Grossman E, Morse J (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430. https://doi.org/10.1016/0016-7037(92)90142-6
Roobaert A, Laruelle GG, Landschützer P, Gruber N, Chou L, Regnier P (2019) The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean. Glob Biogeochem Cycle 33:1693–1714. https://doi.org/10.1029/2019GB006239
Safriel U, Adeel Z (2005) Dryland systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends. Island Press, Washington, DC, pp 623–662
Samanta S, Dalai TK, Pattanaik JK, Rai SK, Mazumdar A (2015) Dissolved inorganic carbon (DIC) and its δ13C in the Ganga (Hooghly) River estuary, India: evidence of DIC generation via organic carbon degradation and carbonate dissolution. Geochem Cosmochim Acta 165:226–248. https://doi.org/10.1016/j.gca.2015.05.040
Sass E, Ben-Yaakov S (1977) The carbonate system in hypersaline solutions: Dead Sea Brines. Mar Chem 5:183–199. https://doi.org/10.1016/0304-4203(77)90006-8
Souza MF, Kjerfve B, Knoppers B, Landim de Souza W, Damasceno RN (2003) Nutrient budgets and trophic state in a hypersaline coastal lagoon: Lagoa de Araruama, Brazil. Estuar Coast Shelf Sci 57:843–858. https://doi.org/10.1016/S0272-7714(02)00415-8
Tong Y, Wang M, Peñuelas J et al (2020) Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. Proc Natl Acad Sci USA 117(21):11566–11572. https://doi.org/10.1073/pnas.1920759117
Van Dam BR, Tobias C, Holbach A, Paerl HW, Zhu G (2018) CO2 limited conditions favor cyanobacteria in a hypereutrophic lake: An empirical and theoretical stable isotope study. Limnol Oceanogr 63:1643–1659. https://doi.org/10.1002/lno.10798
Van Dam BR, Edson JB, Tobias C (2019) Parameterizing air–water gas exchange in the shallow, microtidal new river estuary. J Geophys Res Biogeosci 124:2351–2363. https://doi.org/10.1029/2018JG004908
Wanninkhof R (2014) Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr Methods 12:351–362. https://doi.org/10.4319/lom.2014.12.351
Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215. https://doi.org/10.1016/0304-4203(74)90015-2
Wong WW, Sackett WM (1978) Fractionation of stable carbon isotopes by marine pbytoplankton. Geochim Cosmochim Acta 42:1809–1815
Yang X, Xue L, Li Y, Han P, Liu X, Zhang L, Cai W-J (2018) Treated wastewater changes the export of dissolved inorganic carbon and its isotopic composition and leads to acidification in coastal oceans. Environ Sci Technol 52(10):5590–5599. https://doi.org/10.1021/acs.est.8b00273
Yao H, Hu X (2017) Responses of carbonate system and CO2 flux to extended drought and intense flooding in a semiarid subtropical estuary. Limnol Oceanogr 62:S112–S130. https://doi.org/10.1002/lno.10646
Yao H, McCutcheon MR, Staryk CJ, Hu X (2020) Hydrologic controls on CO2 chemistry and flux in subtropical lagoonal estuaries of the northwestern Gulf of Mexico. Limnol Oceanogr 65:1380–1398. https://doi.org/10.1002/lno.11394
Yates KK, Dufore C, Smiley N, Jackson C, Halley RB (2007) Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay. Mar Chem 104:110–124. https://doi.org/10.1016/j.marchem.2006.12.008
Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas water exchange and dissolution of CO2. Geochim Cosmochim Acta 59(1):107–114. https://doi.org/10.1016/0016-7037(95)91550-D
Zhang C, Huang H, Ye C, Huang L, Li X, Lian J, Liu S (2013) Diurnal and seasonal variations of carbonate system parameters on Luhuitou fringing reef Sanya Bay, Hainan Island, South China Sea. Deep-Sea Res Pt II 96:65–74. https://doi.org/10.1016/j.dsr2.2013.02.013
Acknowledgments
The authors thank Renan Cardoso, Marcelo Muniz and Roberto Meigikos (Laboratory of Radioecology and Environmental Change-Federal Fluminense University) provided access to IRMS equipment and high valuable technical assistance in stable isotopes measurements. Luiz C. Cotovicz Jr. thanks the Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) for a visiting researcher grant (No.PV2-00125-00405.01.00/21) at the Federal University of Ceara (Marine Sciences Institute /LABOMAR / PRPPG). This is a contribution to the France-Brazil International Research Project VELITROP (Vulnerability of Tropical Littoral Ecosystem facing eutrophication) funded by the CNRS-INEE-France, to the Brazilian Ocean Acidification Research Group (BrOA), the Red Latinoamericana de Acidificación del Océano (LAOCA), and Project FEEDBACKS (CAPES/PRINT/UFF Pr.88881.310184/2018-01).
Funding
This work was supported by the Carlos Chagas Foundation for Research Support of the State of Rio de Janeiro (FAPERJ; proc. no. E-26/202.785/2016), and by the Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP; Proc. No. INT-00159-00009.01.00/19).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Additional information
Responsible Editor: J. M. Melack.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cotovicz, L.C., Knoppers, B.A., Régis, C.R. et al. Eutrophication overcoming carbonate precipitation in a tropical hypersaline coastal lagoon acting as a CO2 sink (Araruama Lagoon, SE Brazil). Biogeochemistry 156, 231–254 (2021). https://doi.org/10.1007/s10533-021-00842-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10533-021-00842-3