Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios

A Correction to this article is available

This article has been updated

Abstract

By analyzing 6,480 tree leaf samples from 57 sites within Brazilian biomes, we considered whether vegetation types in terrestrial ecosystems reflect biogeochemical diversity and whether they fit into a leaf economics spectrum (LES). To achieve this, we investigated the relations among leaf carbon (C) and nitrogen (N) concentrations, their isotope natural abundance and C:N ratio. In addition, we tested their correlations with mean annual temperature (MAT) and precipitation (MAP), as climatic factors. We found consistent differences in the C and N concentrations and their isotopic composition among the vegetation types. MAP is the main climatic driver of changes in N, C:N ratio, δ15N, and δ13C, correlating negatively with N and positively with C:N ratio. These relations show that these biomes follow an LES. The Caatinga had the highest δ15N values, suggesting that N residence time in soil is longer due to low leaching and plant uptake. We observed that MAP is not the only factor influencing δ13C values in different biomes; instead canopy effect probably explains the highest values observed in the Cerrado. Our results reinforce earlier findings that life diversity in the tropics reflects biogeochemistry diversity and leaf δ15N opens the possibility for investigating plant trade-offs dictated by the LES. Finally, we expect our findings to contribute to a better understanding of the tropics in global climate models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The complete data set used in this paper can be found at the following link: https://doi.org/10.17632/38npddpnts.1

Change history

  • 30 December 2020

    The initial online publication contained typesetting mistakes in the author information. The original article has been corrected.

References

  1. Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608. https://doi.org/10.2307/2261481

    Google Scholar 

  2. Aerts R, Chapin FSIII (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67. https://doi.org/10.1016/S0065-2504(08)60016-1

    Google Scholar 

  3. Amundson R, Austin AT, Schuur EA, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1031. https://doi.org/10.1029/2002GB001903

    Google Scholar 

  4. Anav A, Friedlingstein P, Beer C, Ciais P, Harper A, Jones C, Murray-Tortarolo G, Papale D, Parazoo NC, Peylin P, Piao S, Sitch S, Viovy N, Wiltshire A, Zhao M (2015) Spatiotemporal patterns of terrestrial gross primary production: a review. Rev Geophys 53:785–818. https://doi.org/10.1002/2015RG000483

    Google Scholar 

  5. Aranibar JN, Otter L, Macko AS, Feral CJW, Epstein HE, Dowty PR, Eckardt F, Shugart HH, Swap RJ (2004) Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands. Glob Chang Biol 10:359–373. https://doi.org/10.1046/j.1529-8817.2003.00698.x

    Google Scholar 

  6. Arruda DM, Fernandes-Filho EI, Solar RRC, Schaefer CEGR (2017) Combining climatic and soil properties better predicts covers of Brazilian biomes. Sci Nat 104:32. https://doi.org/10.1007/s00114-017-1456-6

    Google Scholar 

  7. Asner GP, Martin RE (2016) Convergent elevation trends in canopy chemical traits of tropical forests. Glob Chang Biol 22:2216–2227. https://doi.org/10.1111/gcb.13164

    Google Scholar 

  8. Austin AT, Sala OE (1999) Foliar delta15N is negatively correlated with rainfall along the IGBP transect in Australia. Aust J Plant Physiol 26:293–295

    Google Scholar 

  9. Austin AT, Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 113:519–529. https://doi.org/10.1007/s004420050405

    Google Scholar 

  10. Balzotti CS, Asner GP, Taylor PG, Cleveland CC, Cole R, Martin RE, Nasto M, Osborne BB, Porder S, Townsend AR (2016) Environmental controls on canopy foliar nitrogen distributions in a Neotropical lowland forest. Ecol Appl 26:2451–2464. https://doi.org/10.1002/eap.1408

    Google Scholar 

  11. Barros V, Melo A, Santos M, Nogueira L, Frosi G, Santos MG (2020) Different resource-use strategies of invasive and native woody species from a seasonally dry tropical forest under drought stress and recovery. Plant Physiol Biochem 147:181–190. https://doi.org/10.1016/j.plaphy.2019.12.018

    Google Scholar 

  12. Basu S, Ghosh S, Sanyal P (2019) Spatial heterogeneity in the relationship between precipitation and carbon isotopic discrimination in C3 plants: inferences from a global compilation. Glob Planet Chang 176:123–131. https://doi.org/10.1016/j.gloplacha.2019.02.002

    Google Scholar 

  13. Bonilha RM, Casagrande JC, Soares MR, Reis-Duarte RM (2012) Characterization of the soil fertility and root system of restinga forests. R Bras Ci Solo 36:1804–1813. https://doi.org/10.1590/S0100-06832012000600014

    Google Scholar 

  14. Brazil Flora Group (2015) Growing knowledge: an overview of seed plant diversity in Brazil. Rodriguésia 66:1085–1113. https://doi.org/10.1590/2175-7860201566411

    Google Scholar 

  15. Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis SL, Vásquez Martinez R, Alexiades M, Álvarez Dávila E, Alvarez-Loayza P, Andrade A, Aragão LEOC, Araujo-Murakami A, Arets EJMM, Arroyo L, Aymard JAC, Bánki OS, Baraloto C, Barroso J, Bonal D, Boot RGA, Camargo JLC, Castilho CV, Chama V, Chao KJ, Chave J, Comiskey JA, Cornejo Valverde F, da Costa L, de Oliveira EA, Di Fiore A, Erwin TL, Fauset S, Forsthofer M, Galbraith DR, Grahame ES, Groot N, Hérault B, Higuchi N, Honorio Coronado EN, Keeling H, Killeen TJ, Laurance WF, Laurance S, Licona J, Magnussen WE, Marimon BS, Marimon-Junior BH, Mendoza C, Neill DA, Nogueira EM, Núñez P, Pallqui Camacho NC, Parada A, Pardo-Molina G, Peacock J, Peña-Claros M, Pickavance GC, Pitman NCA, Poorter L, Prieto A, Quesada CA, Ramírez F, Ramírez-Angulo H, Restrepo Z, Roopsind A, Rudas A, Salomão RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Stropp J, Talbot J, ter Steege H, Teran-Aguilar J, Terborgh J, Thomas-Caesar R, Toledo M, Torello-Raventos M, Umetsu RK, van der Heijden GMF, van der Hout P, Guimarães Vieira IC, Vieira SA, Vilanova E, Vos VA, Zagt RJ (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–348. https://doi.org/10.1038/nature14283

    Google Scholar 

  16. Buchmann N, Guehl J, Barigah T, Ehleringer JR (1997) Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110:120–131. https://doi.org/10.1007/s004420050140

    Google Scholar 

  17. Bustamante MMC, Martinelli LA, Silva DA, Camargo PB, Klink CA, Domingues TF, Santos RV (2004) 15N natural abundance in woody plants and soils of the central brazilian savanas (cerrado). Ecol Appl 14:200–213. https://doi.org/10.1890/01-6013

    Google Scholar 

  18. Climate-Data (2020) Dados climáticos para cidades mundiais. ©Climate-Data.org. https://pt.climate-data.org/. Accessed 20 Apr 2020.

  19. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van Der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. https://doi.org/10.1071/BT02124

    Google Scholar 

  20. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187. https://doi.org/10.1038/35041539

    Google Scholar 

  21. Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TD, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Pefiuelas J, Reich PB, Schuur EAG, Stock WD, Ternpler PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992. https://doi.org/10.1111/j.1469-8137.2009.02917.x

    Google Scholar 

  22. Currie DJ (1991) Energy and large-scale patterns of animal- and plant speciesrichness. Am Nat 137:27–49

    Google Scholar 

  23. Currie DJ, Paquin V (1987) Large-scale biogeographical patterns of species richness of tree. Nature 329:326–327. https://doi.org/10.1038/329326a0

    Google Scholar 

  24. Davidson EA, Carvalho CJR, Figueira AM, Ishida FY, Ometto JPHB, Nardoto GB, Sabá RT, Hayashi SN, Leal EC, Vieira ICG, Martinelli LA (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995–999. https://doi.org/10.1038/nature05900

    Google Scholar 

  25. DeFries RS, Foley JA, Asner GP (2004) Land-use choices: balancing human needs and ecosystem function. Front Ecol Environ 2:249–257. https://doi.org/10.1890/1540-9295(2004)002[0249:LCBHNA]2.0.CO;2

    Google Scholar 

  26. Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655. https://doi.org/10.1016/S0169-5347(01)02283-2

    Google Scholar 

  27. Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH (2010) Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc Natl Acad Sci USA 107(13):5738–5743. https://doi.org/10.1073/pnas.0910513107

    Google Scholar 

  28. Domingues TF, Ometto JPHB, Nepstad DC, Brando PM, Martinelli LA, Ehleringer JR (2018) Ecophysiological plasticity of Amazonian trees to long-term drought. Oecologia 187:933–940. https://doi.org/10.1007/s00442-018-4195-2

    Google Scholar 

  29. Duvert C, Hutley LB, Beringer J, Bird MI, Birkel C, Maher DT, Northwood M, Rudge M, Setterfield SA, Wynn JG (2020) Net landscape carbon balance of a tropical savanna: relative importance of fire and aquatic export in offsetting terrestrial production. Glob Chang Biol 26:5899–5913. https://doi.org/10.1111/gcb.15287

    Google Scholar 

  30. Ehleringer JR, Hall AE, Farquhar GD (1993) Stable isotopes and plant carbon: water relations. Academic Press, London

    Google Scholar 

  31. Eiten G (1972) The Cerrado vegetation of Brazil. Bot Rev 38:201–341. https://doi.org/10.1007/BF02859158

    Google Scholar 

  32. Evans TL, Costa M, Tomas WM, Camilo AR (2014) Large-scale habitat mapping of the Brazilian Pantanal wetland: a synthetic aperture radar approach. Remote Sens Environ 155:89–108. https://doi.org/10.1016/j.rse.2013.08.051

    Google Scholar 

  33. Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345. https://doi.org/10.1146/annurev.pp.33.060182.001533

    Google Scholar 

  34. Farquhar GD, Ehleringer JR, Hubick KT (1989a) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Phyiol 40:503–537. https://doi.org/10.1146/annurev.pp.40.060189.002443

    Google Scholar 

  35. Farquhar GD, Hubick KT, Condon AG, Richards RA (1989b) Carbon isotope fractionation and plant water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer, New York, pp 21–40

    Google Scholar 

  36. Field R, O’Brien EM, Whittaker RJ (2005) Global models for prediction woody plant richness from climate: development and evaluation. Ecology 86:2263–2277. https://doi.org/10.1890/04-1910

    Google Scholar 

  37. Freitas ADS, Sampaio EVSB, Menezes RSC, Tiessen H (2010a) 15N natural abundance of non-fixing woody species in the Brazilian dry forest (caatinga). Isot Environ Healt S 56:210–218. https://doi.org/10.1080/10256016.2010.488805

    Google Scholar 

  38. Freitas ADS, Sampaio EVSB, Santos CERS, Fernandes AR (2010b) Biological nitrogen fixation in tree legumes of the Brazilian semi-arid caatinga. J Arid Environ 74:344–349. https://doi.org/10.1016/j.jaridenv.2009.09.018

    Google Scholar 

  39. Freitas ADS, Sampaio EVSB, Ramos APS, Barbosa MRV, Lyra RP, Araújo EL (2015) Nitrogen isotopic patterns in tropical forests along a rainfall gradient in Northeast Brazil. Plant Soil 391:109–122. https://doi.org/10.1007/s11104-015-2417-5

    Google Scholar 

  40. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reich C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate Carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353. https://doi.org/10.1175/JCLI3800.1

    Google Scholar 

  41. Friedlingstein P, Jones MW, O’Sullivan M, Andrew RM, Hauck J, Peters GP, Peters W, Pongratz J, Sitch S, Quéré CL, Bakker DCE, Canadell JG, Ciais P, Jackson RB, Anthoni P, Barbero L, Bastos A, Bastrikov V, Becker M, Bopp L, Buitenhuis E, Chandra N, Chevallier F, Chini LP, Currie KI, Feely RA, Gehlen M, Gilfillan D, Gkritzalis T, Goll DS, Gruber N, Gutekunst S, Harris I, Haverd V, Houghton RA, Hurtt G, Ilyina T, Jain AK, Joetzjer E, Kaplan JO, Kato E, Goldewijk KK, Korsbakken JI, Landschützer P, Lauvset SK, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Marland G, McGuire PC, Melton JR, Metz N, Munro DR, Nabel JEMS, Nakaoka SI, Neill C, Omar AM, Ono T, Peregon A, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rödenbeck C, Séférian R, Schwinger J, Smith N, Tans PP, Tian H, Tilbrook B, Tubiello FN, van der Werf GR, Wiltshire AJ, Zaehle S (2019) Global carbon budged 2019. Earth Syst Sci Data 11:1783–1838. https://doi.org/10.5194/essd-11-1783-2019

    Google Scholar 

  42. Furian S, Barbiéro L, Boulet R (1999) Organisation of the soil mantle in tropical southeastern Brazil (Serra do Mar) in relation to landslides processes. Catena 38:65–83. https://doi.org/10.1016/S0341-8162(99)00015-6

    Google Scholar 

  43. Fyllas NM, Patiño S, Baker TR, Nardoto GB, Martinelli LA, Quesada CA, Paiva R, Schwarz M, Horna V, Mercado LM, Santos A, Arroyo L, Jiménez EM, Luizão FJ, Neill DA, Silva N, Prieto A, Rudas A, Silveira M, Vieira ICG, Lopez-Gonzalez G, Malhi Y, Phillips OL, Lloyd J (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:2677–2708. https://doi.org/10.5194/bg-6-2677-2009

    Google Scholar 

  44. Han W, Fang J, Guo D, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385. https://doi.org/10.1111/j.1469-8137.2005.01530.x

    Google Scholar 

  45. Handley LL, Austin AT, Robinson D, Scrimgeour CM, Raven JA, Heaton THE, Schmidt S, Stewart GR (1999) The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Aust J Plant Physiol 26:185–199. https://doi.org/10.1071/PP98146

    Google Scholar 

  46. Heaton TH (1987) The 15N/14N ratios of plants in South Africa and Namibia: relationship to climate and coastal/saline environments. Oecologia 74:236–246. https://doi.org/10.1007/BF00379365

    Google Scholar 

  47. Hilton RG, Galy A, West AJ, Hovius N, Roberts GG (2013) Geomorphic control on the δ15N of mountain forests. Biogeosciences 10:1693–1705. https://doi.org/10.5194/bg-10-1693-2013

    Google Scholar 

  48. Hobbie EA, Högberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382. https://doi.org/10.1111/j.14698137.2012.04300.x

    Google Scholar 

  49. Hobbie EA, Macko SA, Shugart HH (1999) Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118:353–360. https://doi.org/10.1007/s004420050736

    Article  Google Scholar 

  50. Högberg P (1997) Transley review no. 95 15N natural abundance in soil-plant systems. New Phytol 137:179–203. https://doi.org/10.1046/j.1469-8137.1997.00808.x

    Google Scholar 

  51. Högberg P, Johannisson C (1993) 15N abundance of forests is correlated with losses of nitrogen. Plant Soil 157:147–150. https://doi.org/10.1007/BF02390237

    Google Scholar 

  52. Houlton BZ, Sigman DM, Hedin LO (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci USA 103:8745–8750. https://doi.org/10.1073/pnas.0510185103

    Google Scholar 

  53. Houlton BZ, Sigman DM, Schuur EAG, Hedin LO (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc Natl Acad Sci USA 104:8902–8906. https://doi.org/10.1073/pnas.0609935104

    Google Scholar 

  54. Huntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S, Fisher R, Lomas M, Walker AP, Jones CD, Booth BBB, Malhi Y, Hemming D, Kay G, Good P, Lewis SL, Phillips OL, Atkin OK, Lloyd J, Gloor E, Zaragoza-Castells J, Meir P, Betts R, Harris PP, Nobre C, Marengo J, Cox PM (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci 6:268–273. https://doi.org/10.1038/ngeo1741

    Google Scholar 

  55. IBGE – Instituto Brasileiro de Geografia e Estatística (2012) Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro

    Google Scholar 

  56. Joly CA, Assis MA, Bernacci LC, Tamashiro JY, Campos MCR, Gomes JAMA, Lacerda MS, Santos FAM, Pedroni F, Pereira LS, Padgurschi MCG, Prata BEM, Ramos E, Torres RB, Rochelle A, Martins FR, Alvez LF, Vieira SA, Martinelli LA, Camargo PB, Aidar MPM, Eisenlohr PV, Simões E, Villani JP, Belinello R (2012) Floristic and phytosociology in permanent plots of the Atlantic Rainforest along an altitudinal gradiente in southeastern Brazil. Biota Neotrop 12. https://doi.org/10.1590/S1676-06032012000100012

  57. Joly CA, Padgurschi MCG, Pires APF, Agostinho AA, Marques AC, Amaral AG, Cervone COFO, Adams C, Baccaro FB, Sparovek G, Overbeck GE, Espindola GM, Vieira ICG, Metzger JP, Sabino J, Farinaci JS, Queiroz LP, Gomes LC, da Cunha MMC, Piedade MTF, Bustamante MMC, May P, Fearnside P, Prado RB, Loyola RD (2019) Apresentando o Diagnóstico Brasileiro de Biodiversidade e Serviços Ecossistêmicos. In: Joly CA, Scarano FR, Seixas CS, Metzger JP, Ometto JP, Bustamante MMC, Padgurschi MCG, Pires APF, Castro PFD, Gadda T, Toledo P (eds.) 1° Diagnóstico Brasileiro de Biodiversidade e Serviços Ecossistêmicos, Editora Cubo, São Carlos, pp 351. . https://doi.org/10.4322/978-85-60064-88-5

    Google Scholar 

  58. Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanove F, Cavender-Bares J, Chambers JQ, Chapin FD, Chave J, Coomes D, Cornwell CJM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernández Mendez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusià J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordoñez J, Overbeck G, Ozinga WA, Patiño S, Paula S, Pausas JG, Peñuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana JF, Swaine E, Swenson N, Thompson K, Thorton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011) Try – a global database of plant traits. Glob Chang Biol 17:2905–2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x

    Google Scholar 

  59. Kohn MJ (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci USA 107:19691–19695. https://doi.org/10.1073/pnas.1004933107

    Google Scholar 

  60. Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104:5925–5930. https://doi.org/10.1073/pnas.0608361104

    Google Scholar 

  61. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA 105:1786–1793. https://doi.org/10.1073/pnas.0705414105

    Google Scholar 

  62. Lins SRM, Coletta LD, Ravagnani EC, Gragnani JG, Mazzi EA, Martinelli LA (2016) Stable carbon composition of vegetation and soils across an altitudinal range in the coastal Atlantic Forest of Brazil. Trees 30:1315–1329. https://doi.org/10.1007/s00468-016-1368-7

    Google Scholar 

  63. Lovejoy TE, Nobre C (2019) Amazon tipping point: last chance for action. Sci Adv 5:eaba2949. https://doi.org/10.1126/sciadv.aba2949

    Google Scholar 

  64. Luizão RCC, Luizão FJ, Paiva RQ, Monteiro TF, Sousa LS, Kruijt B (2004) Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Glob Chang Biol 10:592–600. https://doi.org/10.1111/j.1529-8817.2003.00757.x

    Google Scholar 

  65. Machado ICS, Barros LM, Sampaio EVSB (1997) Phenology of Caatinga species at Serra Talhada, PE. Biotropica 29:57–68

    Google Scholar 

  66. Mardegan SF, Nardoto GB, Higuchi N, Moreira MZ, Martinelli LA (2009) Nitrogen availability patterns in white-sand vegetations of Central Brazilian Amazon. Trees 23:479–488. https://doi.org/10.1007/s00468-008-0293-9

    Google Scholar 

  67. Martins SC, Neto ES, Piccolo MC, Almeida DQA, Camargo PB, Carmo JB, Porder S, Lins SRM, Martinelli LA (2015) Soil texture and chemical characteristics along an elevation range in the coastal Atlantic forest of Southeast Brazil. Geoderma Reg 5:106–116. https://doi.org/10.1016/j.geodrs.2015.04.005

    Google Scholar 

  68. Medina E, Minchin P (1980) Stratification of δ13C values of leaves in Amazonian rain forests. Oecologia 45:377–378. https://doi.org/10.1007/BF00540209

    Google Scholar 

  69. Mendonça BAF, Filho EIF, Schaefer CEGR, Mendonça JGF, Vasconcelos BNF (2017) Soil-vegetation relationships and community structure in a “terra-firme”-white-sand vegetation gradient in Viruá National Park, northern Amazon, Brazil. An Acad Bras Cienc 89:1269–1293. https://doi.org/10.1590/0001-3765201720160666

    Google Scholar 

  70. Miatto RC, Wright IJ, Batalha MA (2016) Relationships between soil nutrient status and nutrient-related leaf traits in Brazilian cerrado and seasonal forest communities. Plant Soil 404:13–33. https://doi.org/10.1007/s11104-016-2796-2

    Google Scholar 

  71. Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D (1996) Leaf 15N abundance of subartic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63. https://doi.org/10.1007/BF00328791

    Google Scholar 

  72. Moles AT, Perkins SE, Laffan SW, Flores-Moreno H, Awasthy M, Tindall ML, Sack L, Pitman A, Kattge J, Aarssen LW, Anand M, Bahn M, Blonder B, Cavender-Bares J, Cornelissen JHC, Cornwell WK, Díaz S, Dickie JB, Freschet GT, Griffiths JG, Gutierrez AG, Hemmings FA, Hickler T, Hitchcock TD, Keighery M, Kleyer M, Kurokawa H, Leishman MR, Liu K, Niinemets Ü, Onipchenko V, Onada Y, Penuelas J, Pillar VD, Reich PB, Shiodera S, Siefert A, Sosinski EE Jr, Soudzilovskaia NA, Swaine EK, Swenson NG, van Bodegom PM, Warman L, Weiher E, Wright IJ, Zhang H, Zobel M, Bonser SP (2014) Which is a better predictor of plant traits: temperature of precipitation? J Veg Sci 25:1167–1180. https://doi.org/10.1111/jvs.12190

    Google Scholar 

  73. Moreira FMS, Silva MF, Miana FS (1992) Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytol 121:563–570. https://doi.org/10.1111/j.1469-8137.1992.tb01126.x

    Google Scholar 

  74. Morellato LPC, Haddad CFB (2000) Introduction: the Brazilian Atlantic Forest. Biotropica 32:786–792. https://doi.org/10.1111/j.1744-7429.2000.tb00618.x

    Google Scholar 

  75. Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000) Phenology of Atlantic rain forest trees: a comparative study. Biotropica 32:811–823. https://doi.org/10.1111/j.1744-7429.2000.tb00620.x

    Article  Google Scholar 

  76. Nardoto GB, Ometto JPHB, Ehleringer JR, Higuchi N, Bustamante MMC, Martinelli LA (2008) Understanding the influences of spatial patterns on N availability within the Brazilian Amazon Forest. Ecosystems 11:1234–1256. https://doi.org/10.1007/s10021-008-9189-1

    Google Scholar 

  77. Nardoto GB, Quesada CA, Patiño S, Saiz G, Baker TR, Schwarz M, Schrodt F, Feldpausch TR, Domingues TF, Marimon BS, Marimon Junior BH, Vieira ICG, Silveira M, Bird MI, Phillips OL, Lloyd J, Martinelli LA (2014) Basin-wide variations in Amazon forest nitrogen cycling characteristics as inferred from plant and soil 15N:14N measurements. Plant Ecol Divers 7:173–187. https://doi.org/10.1080/17550874.2013.807524

    Article  Google Scholar 

  78. Oliveira GC, Francelino MR, Arruda DM, Fernandes-Filho EI, Schaefer CEGR (2019) Climate and soils at the Brazilian semiarid and the forest-Caatinga problem: new insights and implications for conservation. Environ Res Lett 14:104007. https://doi.org/10.1088/1748-9326/ab3d7b

    Google Scholar 

  79. Ometto JPHB, Ehleringer JR, Domingues TF, Berry JA, Ishida FY, Mazzi E, Higuchi N, Flanagan LB, Nardoto GB, Martinelli LA (2006) The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79:251–274. https://doi.org/10.1007/s10533-006-9008-8

    Google Scholar 

  80. Overbeck GE, Müller SC, Fidelis A, Pfadenhauer J, Pillar VD, Blanco CC, Boldrini I, Both R, Forneck ED (2007) Brazil’s neglected biome: the South Brazilian Campos. Perspect Plant Ecol 9:101–116. https://doi.org/10.1016/j.ppees.2007.07.005

    Google Scholar 

  81. Pardo LH, Templer PH, Goodale CL, Duke S, Groffman PM, Adams MB, Boeckx P, Boggs J, Campbell J, Colman B, Compton J, Emmett B, Gundersen P, Kjønaas J, Lovett G, Mack M, Magill A, Mbila M, Mitchell MJ, McGee G, McNulty S, Nadelhoffer K, Ollinger S, Ross D, Rueth H, Rustad L, Schaberg P, Schiff S, Schleppi P, Spoelstra J, Wessel W (2006) Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 80:143–171. https://doi.org/10.1007/s10533-006-9015-9

    Google Scholar 

  82. Pereira EJAL, Ferreira PJS, Ribeiro LCS, Carvalho TS, Pereira HBB (2019) Policy in Brazil (2016-2019) threaten conservation of the Amazon rainforest. Environ Sci Policy 100:8–12. https://doi.org/10.1016/j.envsci.2019.06.001

    Google Scholar 

  83. Porder S, Hilley GE (2011) Linking chronosequences with the rest of the world: predicting soil phosphorus content in denuding landscapes. Biogeochemistry 102:153–166. https://doi.org/10.1007/s10533-010-9428-3

    Google Scholar 

  84. Porder S, Asner GP, Vitousek PM (2005) Ground-based and remotely sensed nutrient availability across a tropical landscape. P Natl Acad Sci USA 102:10909–10912. https://doi.org/10.1073/pnas.0504929102

    Google Scholar 

  85. Pugnaire FI, Morillo JA, Peñuelas J, Reich PB, Bardgett RD, Gaxiola A, Wardle DA, van der Putten WH (2019) Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci Adv 5:eaaz1834. https://doi.org/10.1126/sciadv.aaz1834

    Google Scholar 

  86. Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734. https://doi.org/10.1073/pnas.94.25.13730

    Google Scholar 

  87. Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969. https://doi.org/10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2

    Google Scholar 

  88. Ribeiro EMS, Arroyo-Rodríguez V, Santos BA, Tabarelli M, Leal IR (2015) Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. J Appl Ecol 52:611–620. https://doi.org/10.1111/1365-2664.12420

    Google Scholar 

  89. Ribeiro K, Sousa-Neto ER, Carvalho Junior JÁ, Lima JRS, Menezes RSC, Duarte-Neto PJ, Guerra GS, Ometto JPHB (2016) Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga. Sci Total Environ 571:1048–1057. https://doi.org/10.1016/j.scitotenv.2016.07.095

    Google Scholar 

  90. Richter DD, Babbar LI (1991) Soil diversity in the tropics. Adv Ecol Res 21:315–389. https://doi.org/10.1016/S0065-2504(08)60100-2

    Google Scholar 

  91. Rödig E, Cuntz M, Ramming A, Fischer R, Taubert F, Huth A (2018) The importance of forest structure for carbon fluxes of the Amazon rainforest. Environ Res Lett 13:054013. https://doi.org/10.1088/1748-9326/aabc61

    Google Scholar 

  92. Sanchez PA, Buol SW (1974) Soils of the tropics and the world food crisis. Science 188:598–603. https://doi.org/10.1126/science.188.4188.598

    Google Scholar 

  93. Sanchez PA, Logan TJ (1992) Myths and science about the chemistry and fertility of soils in the tropics. In: Lal R, Sanchez PA (eds) Myths and science of soil of the tropics, SSSA special publications no. 29. Soil Science Society of America/American Society of Agronomy, Madison, pp 35–46. https://doi.org/10.2136/sssaspecpub29.c3

    Google Scholar 

  94. Sano EE, Rosa R, Brito JLS, Ferreira LG (2010) Land cover mapping of the tropical savanna region in Brazil. Environ Monit Assess 166:113–124. https://doi.org/10.1007/s10661-009-0988-4

    Google Scholar 

  95. Santiago LS, Kitajima K, Wright SJ, Mulkey SS (2004) Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 139:495–502. https://doi.org/10.1007/s00442-004-1542-2

    Google Scholar 

  96. Sardans J, Alonso R, Carnicer J, Fernández-Martínez M, Vivanco MG, Peñuelas J (2016) Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Perspect Plant Ecol 18:52–69. https://doi.org/10.1016/j.ppees.2016.01.001

    Google Scholar 

  97. Schimel D (1995) Terrestrial ecosystems and the carbon cycle. Glob Chang Biol 1:77–91. https://doi.org/10.1111/j.1365-2486.1995.tb00008.x

    Google Scholar 

  98. Schimel D, Stephens BB, Fisher JB (2015a) Effect of increasing CO2 on the terrestrial carbon cycle. Proc Natl Acad Sci USA 112:436–441. https://doi.org/10.1073/pnas.1407302112

    Google Scholar 

  99. Schimel D, Pavlick R, Fisher JB, Asner GP, Saatchi S, Townsend P, Miller C, Frankenber C, Hibbard K, Cox P (2015b) Observing terrestrial ecosystems and the carbon cycle from space. Glob Chang Biol 21:1762–1776. https://doi.org/10.1111/gcb.12822

    Google Scholar 

  100. Schuur EAG, Matson PA (2001) Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431–422. https://doi.org/10.1007/s004420100671

    Google Scholar 

  101. Sousa-Neto E, Carmo JB, Keller M, Martins SC, Alves LF, Vieira SA, Piccolo MC, Camargo PB, Couto HTZ, Joly CA, Martinelli LA (2011) Soil-atmosphere exchange of nitrous oxide, methane and carbon dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest. Biogeosciences 8:733–742. https://doi.org/10.5194/bg-8-733-2011

    Google Scholar 

  102. Souza LQ, Freitas ADS, Sampaio EVSB, Moura PM, Menezes RSC (2012) How much nitrogen is fixed by biological symbiosis in tropical dry forests? 1. Trees and shrubs. Nutr Cycl Agroecosyst 2:171–179. https://doi.org/10.1007/s10705-012-9531-z

    Google Scholar 

  103. Souza CM, Shimbo JZ, Rosa MR, Parente LL, Alencar AA, Rudorff BFT, Hasenack H, Matsumoto M, Ferreira LG, Souza-Filho PWM, de Oliveira SW, Rocha WF, Fonseca AV, Marques CB, Diniz CG, Costa D, Monteiro D, Rosa ER, Vélez-Martin E, Weber EJ, Lenti FEB, Paternost FF, Pareyn FGC, Siqueira JV, Vieira JL, Neto LCF, Saraiva MM, Sales MH, Salgado MPG, Vasconcelos R, Galano S, Mesquita VV, Azevedo T (2020) Reconstructing three decades of lande use and landa cover changes in Brazilian Biomes with Landsat archive and Earth engine. Remote Sens 12:2735. https://doi.org/10.3390/rs12172735

    Google Scholar 

  104. Sprent JI, Geoghegan IE, Whitty PW, James EK (1996) Natural abundance of 15N and 13C in nodulated legumes and other plants in the cerrado and neighbouring regions of Brazil. Oecologia 105:440–446. https://doi.org/10.1007/BF00330006

    Article  Google Scholar 

  105. Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver os species richness across taxa, biomes and spatial scales. Ecol Lett 14:866–880. https://doi.org/10.1111/ele.12277

    Article  Google Scholar 

  106. Swap RJ, Aranibar JN, Dowty PR, Gilhooly IIIWP, Macko SA (2004) Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Glob Chang Biol 10:350–358. https://doi.org/10.1046/j.1529-8817.2003.00702.x

    Google Scholar 

  107. Tabarelli M, Silva JMC, Gascon C (2004) Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers Conserv 13:1419–1425. https://doi.org/10.1023/B:BIOC.0000019398.36045.1b

    Google Scholar 

  108. Tiessen H, Chacon P, Cuevas E (1994) Phosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the Upper Rio Negro. Oecologia 99:145–150. https://doi.org/10.1007/BF00317095

    Google Scholar 

  109. Townsend AR, Cleveland CC, Asner GP, Bustamante MMC (2007) Controls over foliar N:P ratios in tropical rain forests. Ecology 88:107–118. https://doi.org/10.1890/00129658(2007)88[107:COFNRI]2.0.CO;2

    Google Scholar 

  110. Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–431. https://doi.org/10.1016/j.tree.2008.04.009

    Article  Google Scholar 

  111. Van der Merwe NJ, Medina E (1991) The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J Archaeol Sci 18:249–259. https://doi.org/10.1016/0305-4403(91)90064-V

    Google Scholar 

  112. Van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, Mu M, van Marle MJR, Morton DC, Collatz GJ, Yokelson RJ, Kasibhatla PS (2017) Global fire emissions estimates during 1997–2016. Earth Syst Sci Data 9:697–720. https://doi.org/10.5194/essd-9-697-2017

    Google Scholar 

  113. Vitousek PM, Sanford RL Jr (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167. https://doi.org/10.1146/annurev.es.17.110186.001033

    Google Scholar 

  114. Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–54. https://doi.org/10.1023/A:1015798428743

    Google Scholar 

  115. Weintraub SR, Taylor PG, Porder S, Cleveland CC, Asner GP, Townsend AR (2015) Topographic controls on soil nitrogen availability in a lowland tropical forest. Ecology 96:1561–1574. https://doi.org/10.1890/14-0834.1

    Google Scholar 

  116. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827. https://doi.org/10.1038/nature02403

    Google Scholar 

  117. Yue C, Ciais P, Houghton RA, Nassikas AA (2020) Contribution of land use to the interannual variability of the land carbon cycle. Nat Commun 11:3170. https://doi.org/10.1038/s41467-020-16953-8

    Google Scholar 

  118. Zhang J, He N, Liu C, Xu L, Chen Z, Li Y, Wang R, Yu G, Sun W, Xiao C, Chen HYH, Reich PB (2020) Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Glob Chang Biol 26:2534–2543. https://doi.org/10.1111/gcb.14973

    Google Scholar 

  119. Zhao N, Yu G, He N, Wang Q, Guo D, Zhang X, Wang R, Xu Z, Jiao C, Li N, Jia Y (2016) Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Glob Ecol Biogeogr 25:359–367. https://doi.org/10.1111/geb.12427

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. A. Martinelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The initial online publication contained typesetting mistakes in the author information. The original article has been corrected.

This paper is an invited contribution to the 35th Anniversary Special Issue, edited by Sujay Kaushal, Robert Howarth, and Kate Lajtha.

The initial online publication contained typesetting mistakes in the author information. The original article has been corrected.

Responsible Editor: Robert W. Howarth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martinelli, L.A., Nardoto, G.B., Soltangheisi, A. et al. Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios. Biogeochemistry (2020). https://doi.org/10.1007/s10533-020-00714-2

Download citation

Keywords

  • Leaf economics spectrum
  • Tropical forests
  • Climate models
  • Foliar nutrients
  • Biogeochemical diversity