Skip to main content

Experimental shifts of hydrologic residence time in a sandy urban stream sediment–water interface alter nitrate removal and nitrous oxide fluxes

Abstract

The sediment–water interfaces (SWI) of streams serve as important biogeochemical hotspots in watersheds and contribute to whole-catchment reactive nitrogen budgets and water-quality conditions. Recently, the SWI has been identified as an important source of nitrous oxide (N2O) produced in streams, with SWI residence time among the principal controls on its production. Here, we conducted a series of controlled manipulations of SWI exchange in an urban stream that has high dissolved N2O concentrations and where we concurrently evaluated less-mobile porosity dynamics. Our experiments took place within isolated portions of two sediment types: a coarse sandy stream bed resulting from excess road-sand application in the watershed, and a coarse sand mixed with clay and organic particles. In these manipulation experiments we systematically varied SWI vertical-flux rates and residence times to evaluate their effect on the fate of nitrate and production rates of N2O. Our experiments demonstrate that the fate and transport of nitrate and N2O production are influenced by hydrologic flux rates through SWI sediments and associated residence times. Specifically, we show that manipulations of hydrologic flux systematically shifted the depth of the bulk oxic–anoxic interface in the sediments, and that nitrate removal increased with residence time. Our results also support the emerging hypothesis of a ‘Goldilocks’ timescale for the production of nitrous oxide, when transport and reaction timescales favor incomplete denitrification. Areal N2O production rates were up to threefold higher during an intermediate residence-time experiment, compared to shorter or longer residence times. In our companion study we documented that the studied sediments were dominated by a long-residence-time less-mobile porosity domain, which could explain why we observed N2O production even in bulk-oxic sediments. Overall, we have experimentally demonstrated that changes to SWI hydrologic residence times and SWI substrate associated with urbanization can change the biogeochemical function of the river corridor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Anderson JK, Wondzell SM, Gooseff MN, Haggerty R (2005) Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H.J. Andrews Experimental Forest, Oregon, USA. Hydrol Process 19:2931–2949. https://doi.org/10.1002/hyp.5791

    Article  Google Scholar 

  2. Atkinson BL, Grace MR, Hart BT, Vanderkruk KEN (2008) Sediment instability affects the rate and location of primary production and respiration in a sand-bed stream. J North Am Benthol Soc 27:581–592. https://doi.org/10.1899/07-143.1

    Article  Google Scholar 

  3. Baldwin DS, Rees GN, Mitchell AM et al (2006) The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands 26:455–464. https://doi.org/10.1672/0277-5212(2006)26[455:TSEOSO]2.0.CO;2

    Article  Google Scholar 

  4. Baulch HM, Schiff SL, Maranger R, Dillon PJ (2011) Nitrogen enrichment and the emission of nitrous oxide from streams. Glob Biogeochem Cycles. https://doi.org/10.1029/2011GB004047

    Article  Google Scholar 

  5. Beaulieu JJ, Tank JL, Hamilton SK et al (2011) Nitrous oxide emission from denitrification in stream and river networks. Proc Natl Acad Sci USA 108:214–219. https://doi.org/10.1073/pnas.1011464108

    Article  Google Scholar 

  6. Bengtsson MM, Wagner K, Burns NR et al (2014) No evidence of aquatic priming effects in hyporheic zone microcosms. Sci Rep 4:5187. https://doi.org/10.1038/srep05187

    Article  Google Scholar 

  7. Betlach MR, Tiedje JM (1981) Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl Environ Microbiol 42:1074–1084

    Article  Google Scholar 

  8. Bianchi TS, Thornton DCO, Yvon-Lewis SA et al (2015) Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system. Geophys Res Lett 42:5460–5467. https://doi.org/10.1002/2015GL064765

    Article  Google Scholar 

  9. Boano F, Harvey JW, Marion A et al (2014) Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Rev Geophys 52:603–679. https://doi.org/10.1002/2012RG000417

    Article  Google Scholar 

  10. Boulton AJ, Findlay S, Marmonier P et al (1998) The functional significance of the hyporheic zone in streams and rivers. Annu Rev Ecol Syst.https://doi.org/10.1146/annurev.ecolsys.29.1.59

    Article  Google Scholar 

  11. Bourke MF, Kessler AJ, Cook PLM (2014) Influence of buried Ulva lactuca on denitrification in permeable sediments. Mar Ecol Prog Ser 498:85–94. https://doi.org/10.3354/meps10611

    Article  Google Scholar 

  12. Briggs MA, Day-Lewis FD, MahmoodPoor Dehkordy F et al (2018) Direct observations of hydrologic exchange occurring with less-mobile porosity and the development of anoxic microzones in sandy lakebed sediments. Water Resour Res 54:4714–4729. https://doi.org/10.1029/2018WR022823

    Article  Google Scholar 

  13. Briggs MA, Day-Lewis FD, Zarnetske JP, Harvey JW (2015) A physical explanation for the development of redox microzones in hyporheic flow. Geophys Res Lett 42:4402–4410. https://doi.org/10.1002/2015GL064200

    Article  Google Scholar 

  14. Briggs MA, Gooseff MN, Peterson BJ et al (2010) Surface and hyporheic transient storage dynamics throughout a coastal stream network. Water Resour Res. https://doi.org/10.1029/2009WR008222

    Article  Google Scholar 

  15. Briggs MA, Lautz LK, Hare DK (2014) Residence time control on hot moments of net nitrate production and uptake in the hyporheic zone. Hydrol Process 28:3741–3751. https://doi.org/10.1002/hyp.9921

    Article  Google Scholar 

  16. Briggs MA, Lautz LK, Hare DK, González-Pinzón R (2013) Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams. Freshw Sci 32:622–641. https://doi.org/10.1899/12-110.1

    Article  Google Scholar 

  17. Burford JR, Bremner JM (1975) Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biol Biochem 7:389–394. https://doi.org/10.1016/0038-0717(75)90055-3

    Article  Google Scholar 

  18. Carlozzi CA, King K, Newbold WF (1975) Ecosystems and resources of the Massachusetts Coast. Massachusetts Coastal Zone Management Program, Boston

    Google Scholar 

  19. Chin A (2006) Urban transformation of river landscapes in a global context. Geomorphology 79:460–487. https://doi.org/10.1016/j.geomorph.2006.06.033

    Article  Google Scholar 

  20. Chowdhury SR, Zarnetske JP, Phanikumar MS et al (2020) Formation criteria for hyporheic anoxic microzones: assessing interactions of hydraulics, nutrients, and biofilms. Water Resour Res 56:e2019WR025971. https://doi.org/10.1029/2019WR025971

    Article  Google Scholar 

  21. Davies BE (1974) Loss-on-ignition as an estimate of soil organic matter. Soil Sci Soc Am J 38:150–151. https://doi.org/10.2136/sssaj1974.03615995003800010046x

    Article  Google Scholar 

  22. Duff JH, Murphy F, Fuller CC et al (1998) A mini drivepoint sampler for measuring pore water solute concentrations in the hyporheic zone of sand-bottom streams. Limnol Oceanogr 43:1378–1383

    Article  Google Scholar 

  23. Duff JH, Triska FJ (1990) Denitrifications in sediments from the hyporheic zone adjacent to a small forested stream. Can J Fish Aquat Sci 47:1140–1147. https://doi.org/10.1139/f90-133

    Article  Google Scholar 

  24. Findlay S (1995) Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnol Oceanogr 40:159–164. https://doi.org/10.4319/lo.1995.40.1.0159

    Article  Google Scholar 

  25. Finkenbine JK, Atwater JW, Mavinic DS (2000) Stream health after urbanization. J Am Water Resour Assoc 36:1149–1160. https://doi.org/10.1111/j.1752-1688.2000.tb05717.x

    Article  Google Scholar 

  26. Firestone MK, Firestone RB, Tiedje JM (1980) Nitrous oxide from soil denitrification: factors controlling its biological production. Science 208:749–751. https://doi.org/10.1126/science.208.4445.749

    Article  Google Scholar 

  27. Firestone MK, Tiedje JM (1979) Temporal change in nitrous oxide and dinitrogen from denitrification following onset of anaerobiosis. Appl Environ Microbiol 38:673–679

    Article  Google Scholar 

  28. Forster P, Ramaswamy V, Artaxo P, et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp 129–234

  29. Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. https://doi.org/10.1007/s10533-004-0370-0

    Article  Google Scholar 

  30. Gardner JR, Doyle MW (2018) Sediment–water surface area along rivers: water column versus benthic. Ecosystems. https://doi.org/10.1007/s10021-018-0236-2

    Article  Google Scholar 

  31. Gontikaki E, Witte U (2019) No strong evidence of priming effects on the degradation of terrestrial plant detritus in estuarine sediments. Front Mar Sci. https://doi.org/10.3389/fmars.2019.00327

    Article  Google Scholar 

  32. Groffman PM, Law NL, Belt KT et al (2004) Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 7:393–403. https://doi.org/10.1007/s10021-003-0039-x

    Article  Google Scholar 

  33. Gu C, Hornberger GM, Mills AL et al (2007) Nitrate reduction in streambed sediments: effects of flow and biogeochemical kinetics. Water Resour Res. https://doi.org/10.1029/2007WR006027

    Article  Google Scholar 

  34. Guenet B, Danger M, Abbadie L, Lacroix G (2010) Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91:2850–2861. https://doi.org/10.1890/09-1968.1

    Article  Google Scholar 

  35. Hall RO Jr, Tank JL, Sobota DJ et al (2009) Nitrate removal in stream ecosystems measured by 15N addition experiments: total uptake. Limnol Oceanogr 54:653–665. https://doi.org/10.4319/lo.2009.54.3.0653

    Article  Google Scholar 

  36. Hampton TB (2020) Accompanying Data to Hampton et al. (2020) Experimental shifts of hydrologic residence time in a sandy urban stream sediment-water interface alter nitrate removal and nitrous oxide fluxes. Hydroshare. https://www.hydroshare.org/resource/ded08cce17244dbf871a437c3b333d03

  37. Hampton TB (2018) Exploring the role of hydrologic residence time and chemistry in the processing of nitrate at the sediment-water interface. M.S. Thesis, Michigan State University

  38. Hampton TB, Zarnetske JP, Briggs MA et al (2019) Residence time controls on the fate of nitrogen in flow-through lakebed sediments. J Geophys Res Biogeosci 124:689–707. https://doi.org/10.1029/2018JG004741

    Article  Google Scholar 

  39. Harvey JW, Böhlke JK, Voytek MA et al (2013) Hyporheic zone denitrification: controls on effective reaction depth and contribution to whole-stream mass balance. Water Resour Res 49:6298–6316. https://doi.org/10.1002/wrcr.20492

    Article  Google Scholar 

  40. Harvey JW, Drummond JD, Martin RL et al (2012) Hydrogeomorphology of the hyporheic zone: stream solute and fine particle interactions with a dynamic streambed. J Geophys Res Biogeosci. https://doi.org/10.1029/2012JG002043

    Article  Google Scholar 

  41. Harvey RW, Metge DW, LeBlanc DR et al (2015) Importance of the colmation layer in the transport and removal of cyanobacteria, viruses, and dissolved organic carbon during natural lake-bank filtration. J Environ Qual 44:1413–1423. https://doi.org/10.2134/jeq2015.03.0151

    Article  Google Scholar 

  42. Hedin LO, von Fischer JC, Ostrom NE et al (1998) Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil–stream interfaces. Ecology 79:684–703. https://doi.org/10.1890/0012-9658(1998)079[0684:TCONAO]2.0.CO;2

    Article  Google Scholar 

  43. Hester ET, Cardenas MB, Haggerty R, Apte SV (2017) The importance and challenge of hyporheic mixing. Water Resour Res 53:3565–3575. https://doi.org/10.1002/2016WR020005

    Article  Google Scholar 

  44. Hester ET, Eastes LA, Widdowson MA (2019) Effect of surface water stage fluctuation on mixing-dependent hyporheic denitrification in riverbed dunes. Water Resour Res 55:4668–4687. https://doi.org/10.1029/2018WR024198

    Article  Google Scholar 

  45. Hester ET, Young KI, Widdowson MA (2014) Controls on mixing-dependent denitrification in hyporheic zones induced by riverbed dunes: a steady state modeling study. Water Resour Res 50:9048–9066. https://doi.org/10.1002/2014WR015424

    Article  Google Scholar 

  46. Hotchkiss ER, Hall RO Jr, Baker MA et al (2014) Modeling priming effects on microbial consumption of dissolved organic carbon in rivers. J Geophys Res Biogeosci 119:982–995

    Article  Google Scholar 

  47. Inwood SE, Tank JL, Bernot MJ (2007) Factors controlling sediment denitrification in midwestern streams of varying land use. Microb Ecol 53:247–258. https://doi.org/10.1007/s00248-006-9104-2

    Article  Google Scholar 

  48. Kaufman MH, Cardenas MB, Buttles JM et al (2017) Hyporheic hot moments: dissolved oxygen dynamics in the hyporheic zone in response to surface flow perturbations. Water Resour Res 53:6642–6662. https://doi.org/10.1002/2016WR020296

    Article  Google Scholar 

  49. Kaushal SS, Groffman PM, Likens GE et al (2005) Increased salinization of fresh water in the northeastern United States. Proc Natl Acad Sci USA 102:13517–13520

    Article  Google Scholar 

  50. Kaye JP, Groffman PM, Grimm NB et al (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21:192–199. https://doi.org/10.1016/j.tree.2005.12.006

    Article  Google Scholar 

  51. Klocker CA, Kaushal SS, Groffman PM et al (2009) Nitrogen uptake and denitrification in restored and unrestored streams in urban Maryland, USA. Aquat Sci 71:411–424. https://doi.org/10.1007/s00027-009-0118-y

    Article  Google Scholar 

  52. Kravchenko AN, Fry JE, Guber AK (2018) Water absorption capacity of soil-incorporated plant leaves can affect N2O emissions and soil inorganic N concentrations. Soil Biol Biochem 121:113–119. https://doi.org/10.1016/j.soilbio.2018.03.013

    Article  Google Scholar 

  53. Kravchenko AN, Toosi ER, Guber AK et al (2017) Hotspots of soil N2O emission enhanced through water absorption by plant residue. Nat Geosci 10:496. https://doi.org/10.1038/ngeo2963

    Article  Google Scholar 

  54. Lansdown K, Heppell CM, Trimmer M et al (2015) The interplay between transport and reaction rates as controls on nitrate attenuation in permeable, streambed sediments. J Geophys Res Biogeosci 120:1093–1109. https://doi.org/10.1002/2014JG002874

    Article  Google Scholar 

  55. Laursen AE, Seitzinger SP (2002) Measurement of denitrification in rivers: an integrated, whole reach approach. Hydrobiologia 485:67–81. https://doi.org/10.1023/A:1021398431995

    Article  Google Scholar 

  56. Lautz LK, Fanelli RM (2008) Seasonal biogeochemical hotspots in the streambed around restoration structures. Biogeochemistry 91:85–104. https://doi.org/10.1007/s10533-008-9235-2

    Article  Google Scholar 

  57. Laverman AM, Canavan RW, Slomp CP, Cappellen PV (2007) Potential nitrate removal in a coastal freshwater sediment (Haringvliet Lake, The Netherlands) and response to salinization. Water Res 41:3061–3068. https://doi.org/10.1016/j.watres.2007.04.002

    Article  Google Scholar 

  58. Lee DR (1977) A device for measuring seepage flux in lakes and estuaries 1. Limnol Oceanogr 22:140–147

    Article  Google Scholar 

  59. Lee-Cullin JA, Zarnetske JP, Ruhala SS, Plont S (2018) Toward measuring biogeochemistry within the stream-groundwater interface at the network scale: an initial assessment of two spatial sampling strategies. Limnol Oceanogr Methods 16:722–733. https://doi.org/10.1002/lom3.10277

    Article  Google Scholar 

  60. Liu Y, Liu C, Nelson WC et al (2017) Effect of water chemistry and hydrodynamics on nitrogen transformation activity and microbial community functional potential in hyporheic zone sediment columns. Environ Sci Technol 51:4877–4886. https://doi.org/10.1021/acs.est.6b05018

    Article  Google Scholar 

  61. MahmoodPoor Dehkordy F, Briggs MA, Day-Lewis FD et al (2019) Multi-scale preferential flow processes in an urban streambed under variable hydraulic conditions. J Hydrol. https://doi.org/10.1016/j.jhydrol.2019.03.022

    Article  Google Scholar 

  62. MahmoodPoor Dehkordy F, Briggs MA, Day-Lewis FD, Bagtzoglou AC (2018) Simulation of less-mobile porosity dynamics in contrasting sediment water interface porous media. Hydrol Process 32:2030–2043. https://doi.org/10.1002/hyp.13134

    Article  Google Scholar 

  63. Marzadri A, Dee MM, Tonina D et al (2017) Role of surface and subsurface processes in scaling N2O emissions along riverine networks. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1617454114

    Article  Google Scholar 

  64. Marzadri A, Tonina D, Bellin A (2012) Morphodynamic controls on redox conditions and on nitrogen dynamics within the hyporheic zone: application to gravel bed rivers with alternate-bar morphology. J Geophys Res Biogeosci. https://doi.org/10.1029/2012JG001966

    Article  Google Scholar 

  65. Marzadri A, Tonina D, Bellin A (2011) A semianalytical three-dimensional process-based model for hyporheic nitrogen dynamics in gravel bed rivers. Water Resour Res. https://doi.org/10.1029/2011WR010583

    Article  Google Scholar 

  66. Marzadri A, Tonina D, Bellin A, Tank JL (2014) A hydrologic model demonstrates nitrous oxide emissions depend on streambed morphology. Geophys Res Lett. https://doi.org/10.1002/2014GL060732

    Article  Google Scholar 

  67. Mulholland PJ, Hall RO Jr, Sobota DJ et al (2009) Nitrate removal in stream ecosystems measured by 15N addition experiments: denitrification. Limnol Oceanogr 54:666–680. https://doi.org/10.4319/lo.2009.54.3.0666

    Article  Google Scholar 

  68. Mulholland PJ, Helton AM, Poole GC et al (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–205. https://doi.org/10.1038/nature06686

    Article  Google Scholar 

  69. Ocampo CJ, Oldham CE, Sivapalan M (2006) Nitrate attenuation in agricultural catchments: shifting balances between transport and reaction. Water Resour Res. https://doi.org/10.1029/2004WR003773

    Article  Google Scholar 

  70. Ostrom NE, Hedin LO, Von Fischer JC, Robertson GP (2002) Nitrogen transformations and NO3-removal at a soil–stream interface: a stable isotope approach. Ecol Appl 12:1027–1043. https://doi.org/10.1890/1051-0761(2002)012[1027:NTANRA]2.0.CO;2

    Article  Google Scholar 

  71. Pace ML, Carpenter SR, Wilkinson GM (2019) Long-term studies and reproducibility: Lessons from whole-lake experiments. Limnol Oceanogr 64:S22–S33. https://doi.org/10.1002/lno.11012

    Article  Google Scholar 

  72. Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040

    Article  Google Scholar 

  73. Peterson BJ, Wollheim WM, Mulholland PJ et al (2001) Control of nitrogen export from watersheds by headwater streams. Science 292:86–90. https://doi.org/10.1126/science.1056874

    Article  Google Scholar 

  74. Piña-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81:111–130. https://doi.org/10.1007/s10533-006-9033-7

    Article  Google Scholar 

  75. Pizzuto JE, Hession WC, McBride M (2000) Comparing gravel-bed rivers in paired urban and rural catchments of southeastern Pennsylvania. Geology 28:79–82

    Article  Google Scholar 

  76. Quick AM, Reeder WJ, Farrell TB et al (2016) Controls on nitrous oxide emissions from the hyporheic zones of streams. Environ Sci Technol 50:11491–11500. https://doi.org/10.1021/acs.est.6b02680

    Article  Google Scholar 

  77. Core Team R (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  78. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. https://doi.org/10.1126/science.1176985

    Article  Google Scholar 

  79. Rosenberry DO, LaBaugh JW (2008) Field techniques for estimating water fluxes between surface water and ground water. Geological Survey (US)

  80. Ryan RJ, Boufadel MC (2007) Evaluation of streambed hydraulic conductivity heterogeneity in an urban watershed. Stoch Environ Res Risk Assess 21:309–316. https://doi.org/10.1007/s00477-006-0066-1

    Article  Google Scholar 

  81. Ryan RJ, Packman AI (2006) Changes in streambed sediment characteristics and solute transport in the headwaters of Valley Creek, an urbanizing watershed. J Hydrol 323:74–91. https://doi.org/10.1016/j.jhydrol.2005.06.042

    Article  Google Scholar 

  82. Sawyer AH (2014GL) Enhanced removal of groundwater-borne nitrate in heterogeneous aquatic sediments. Geophys Res Lett 42:2014GL062234. https://doi.org/10.1002/2014GL062234

    Article  Google Scholar 

  83. Schlesinger WH, Reckhow KH, Bernhardt ES (2006) Global change: the nitrogen cycle and rivers. Water Resour Res. https://doi.org/10.1029/2005WR004300

    Article  Google Scholar 

  84. Schmadel NM, Ward AS, Wondzell SM (2017) Hydrologic controls on hyporheic exchange in a headwater mountain stream. Water Resour Res 53:6260–6278. https://doi.org/10.1002/2017WR020576

    Article  Google Scholar 

  85. Scruggs CR, Briggs M, Day-Lewis FD et al (2018) The dual-domain porosity apparatus: characterizing dual porosity at the sediment/water interface. Groundwater 57:640–646. https://doi.org/10.1111/gwat.12846

    Article  Google Scholar 

  86. Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724. https://doi.org/10.4319/lo.1988.33.4part2.0702

    Article  Google Scholar 

  87. Seitzinger SP, Styles RV, Boyer EW et al (2002) Nitrogen retention in rivers: model development and application to watersheds in the northeastern USA. Biogeochemistry 57(58):199–237. https://doi.org/10.1007/978-94-017-3405-9_6

    Article  Google Scholar 

  88. Sexstone AJ, Revsbech NP, Parkin TB, Tiedje JM (1985) Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci Soc Am J 49:645–651. https://doi.org/10.2136/sssaj1985.03615995004900030024x

    Article  Google Scholar 

  89. Sheibley RW, Duff JH, Jackman AP, Triska FJ (2003) Inorganic nitrogen transformations in the bed of the Shingobee River, Minnesota: Integrating hydrologic and biological processes using sediment perfusion cores. Limnol Oceanogr 48:1129–1140. https://doi.org/10.4319/lo.2003.48.3.1129

    Article  Google Scholar 

  90. Smidt SJ, Cullin JA, Ward AS et al (2015) A comparison of hyporheic transport at a cross-vane structure and natural riffle. Groundwater 53:859–871. https://doi.org/10.1111/gwat.12288

    Article  Google Scholar 

  91. Smith LK, Voytek MA, Böhlke JK, Harvey JW (2006) Denitrification in nitrate-rich streams: application of N2: Ar and 15N-tracer methods in intact cores. Ecol Appl 16:2191–2207

    Article  Google Scholar 

  92. Sobczak WV, Hedin LO, Klug MJ (1998) Relationships between bacterial productivity and organic carbon at a soil—stream interface. Hydrobiologia 386:45–53. https://doi.org/10.1023/A:1003583813445

    Article  Google Scholar 

  93. Stelzer RS (2015) Yearlong impact of buried organic carbon on nitrate retention in stream sediments. J Environ Qual 44:1711–1719. https://doi.org/10.2134/jeq2015.02.0073

    Article  Google Scholar 

  94. Stelzer RS, Scott JT, Bartsch LA (2015) Buried particulate organic carbon stimulates denitrification and nitrate retention in stream sediments at the groundwater–surface water interface. Freshw Sci 34:161–171. https://doi.org/10.1086/678249

    Article  Google Scholar 

  95. Stelzer RS, Scott JT, Bartsch LA, Parr TB (2014) Particulate organic matter quality influences nitrate retention and denitrification in stream sediments: evidence from a carbon burial experiment. Biogeochemistry 119:387–402. https://doi.org/10.1007/s10533-014-9975-0

    Article  Google Scholar 

  96. Stelzer RS, Strauss EA, Coulibaly M (2017) Assessing the importance of seepage and springs to nitrate flux in a stream network in the Wisconsin sand plains. Hydrol Process. https://doi.org/10.1002/hyp.11161

    Article  Google Scholar 

  97. Stoliker DL, Repert DA, Smith RL et al (2016) Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake. Environ Sci Technol 50:3649–3657. https://doi.org/10.1021/acs.est.5b06155

    Article  Google Scholar 

  98. Sudduth EB, Hassett BA, Cada P, Bernhardt ES (2011) Testing the field of dreams hypothesis: functional responses to urbanization and restoration in stream ecosystems. Ecol Appl 21:1972–1988. https://doi.org/10.1890/10-0653.1

    Article  Google Scholar 

  99. Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenh Gas Meas Manag 1:17–26. https://doi.org/10.3763/ghgmm.2010.0007

    Article  Google Scholar 

  100. Thomas SA, Valett HM, Mulholland PJ et al (2001) Nitrogen retention in headwater streams: the influence of groundwater-surface water exchange. Sci World J. https://doi.org/10.1100/tsw.2001.272

    Article  Google Scholar 

  101. Tonina D, de Barros FPJ, Marzadri A, Bellin A (2016) Does streambed heterogeneity matter for hyporheic residence time distribution in sand-bedded streams? Adv Water Resour 96:120–126. https://doi.org/10.1016/j.advwatres.2016.07.009

    Article  Google Scholar 

  102. Triska FJ, Duff JH, Avanzino RJ (1993) The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial—aquatic interface. Hydrobiologia 251:167–184. https://doi.org/10.1007/BF00007177

    Article  Google Scholar 

  103. van Dijk G, Smolders AJP, Loeb R et al (2015) Salinization of coastal freshwater wetlands; effects of constant versus fluctuating salinity on sediment biogeochemistry. Biogeochemistry 126:71–84. https://doi.org/10.1007/s10533-015-0140-1

    Article  Google Scholar 

  104. Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750. https://doi.org/10.1890/1051-0761(1997)007%5B0737:HAOTGN%5D2.0.CO;2

    Article  Google Scholar 

  105. Wagner K, Bengtsson MM, Besemer K et al (2014) Functional and structural responses of hyporheic biofilms to varying sources of dissolved organic matter. Appl Environ Microbiol AEM. https://doi.org/10.1128/AEM.01128-14

    Article  Google Scholar 

  106. Ward AS, Fitzgerald M, Gooseff MN et al (2012) Hydrologic and geomorphic controls on hyporheic exchange during base flow recession in a headwater mountain stream. Water Resour Res. https://doi.org/10.1029/2011WR011461

    Article  Google Scholar 

  107. Ward AS, Schmadel NM, Wondzell SM et al (2016) Hydrogeomorphic controls on hyporheic and riparian transport in two headwater mountain streams during base flow recession. Water Resour Res. https://doi.org/10.1002/2015WR018225

    Article  Google Scholar 

  108. Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res Oceanogr Abstr 17:721–735. https://doi.org/10.1016/0011-7471(70)90037-9

    Article  Google Scholar 

  109. Williams M, Hopkinson C, Rastetter E, Vallino J (2004) N budgets and aquatic uptake in the Ipswich River basin, northeastern Massachusetts. Water Resour Res. https://doi.org/10.1029/2004WR003172

    Article  Google Scholar 

  110. Wollheim WM (2016) Year 2012, 15 minute measurements of stage in a small headwater stream draining a highly suburban catchment (72% residential). Environ Data Initiat, Saw Mill Brook, Burlington, MA

    Google Scholar 

  111. Wollheim WM, Harms TK, Peterson BJ et al (2014) Nitrate uptake dynamics of surface transient storage in stream channels and fluvial wetlands. Biogeochemistry 120:239–257. https://doi.org/10.1007/s10533-014-9993-y

    Article  Google Scholar 

  112. Wollheim WM, Pellerin BA, Vörösmarty CJ, Hopkinson CS (2005) N retention in urbanizing headwater catchments. Ecosystems 8:871–884. https://doi.org/10.1007/s10021-005-0178-3

    Article  Google Scholar 

  113. Wondzell SM (2011) The role of the hyporheic zone across stream networks. Hydrol Process 25:3525–3532. https://doi.org/10.1002/hyp.8119

    Article  Google Scholar 

  114. Wondzell SM, Swanson FJ (1996) Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream. I: Hydrologic processes. J N Am Benthol Soc 15:3–19. https://doi.org/10.2307/1467429

    Article  Google Scholar 

  115. Zarnetske JP, Haggerty R, Wondzell SM (2015) Coupling multiscale observations to evaluate hyporheic nitrate removal at the reach scale. Freshw Sci 34:172–186. https://doi.org/10.1086/680011

    Article  Google Scholar 

  116. Zarnetske JP, Haggerty R, Wondzell SM et al (2012) Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones. Water Resour Res 48:W11508. https://doi.org/10.1029/2012WR013291

    Article  Google Scholar 

  117. Zarnetske JP, Haggerty R, Wondzell SM, Baker MA (2011) Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. J Geophys Res Biogeosci 116:72. https://doi.org/10.1029/2010JG001356

    Article  Google Scholar 

  118. Zheng L, Cardenas MB (2018) Diel stream temperature effects on nitrogen cycling in hyporheic zones. J Geophys Res Biogeosci. https://doi.org/10.1029/2018JG004412

    Article  Google Scholar 

  119. Zheng L, Cardenas MB, Wang L, Mohrig D (2019) Ripple effects: bedform morphodynamics cascading into hyporheic zone biogeochemistry. Water Resour Res. https://doi.org/10.1029/2018WR023517

    Article  Google Scholar 

  120. Zimmer MA, Lautz LK (2014) Temporal and spatial response of hyporheic zone geochemistry to a storm event. Hydrol Process 28:2324–2337. https://doi.org/10.1002/hyp.9778

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Wilfred Wollheim for historical information from the watershed, the Town of Burlington, MA, for access to the site, and Erin Seybold for help with site characterization. We also thank Courtney Scruggs and Ashton Krajnovich for assistance in the field, Denis LeBlanc for coordinating efforts with the U.S. Geological Survey (USGS), and Steve Hamilton and Nathaniel Ostrom for discussions on earlier versions of this manuscript. This work was funded by National Science Foundation (NSF) Awards EAR-1446328, EAR-1446300, and EAR-1446375 and the USGS Toxic Substances Hydrology Program. Any use of trade firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Data accompanying the manuscript are available on HydroShare (Hampton 2020).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tyler B. Hampton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Stephen D. Sebestyen

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 127 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hampton, T.B., Zarnetske, J.P., Briggs, M.A. et al. Experimental shifts of hydrologic residence time in a sandy urban stream sediment–water interface alter nitrate removal and nitrous oxide fluxes. Biogeochemistry 149, 195–219 (2020). https://doi.org/10.1007/s10533-020-00674-7

Download citation

Keywords

  • Nitrogen
  • Denitrification
  • Nitrous oxide
  • Sediment–water interface
  • Nutrient cycling
  • Urban biogeochemistry