Natural atmospheric deposition of molybdenum: a global model and implications for tropical forests

Abstract

Molybdenum (Mo) is an essential trace metal that plays a central role in biological nitrogen fixation (BNF) as the cofactor in the conventional form of the nitrogenase enzyme. The low availability of Mo in soils often constrains BNF in many terrestrial ecosystems. Atmospheric sources may supply a critical source of exogenous Mo to regions with highly weathered soils likely low in Mo, particularly in tropical forests where BNF is thought to be high. Here, we present results of a global model of Mo deposition that considers the principal natural sources of atmospheric Mo—windborne mineral dust, sea-salt aerosols, and volcanic sources—which operate over geologic time. The largest source of mineral dust globally is from North Africa. We quantified Mo concentrations in dust and sediments from the Bodélé Depression, a large source within North Africa, to constrain our model. Because the Mo concentration of seawater is relatively high for a trace element, we also hypothesized that sea-salt aerosols would contribute atmospheric Mo. Our model predicts higher Mo deposition to terrestrial ecosystems along coasts downstream in trade winds, near active volcanoes, and in areas that receive dust deposition from North Africa, such as the northern Amazon Basin, the Caribbean, and Central America. Regions with higher Mo deposition tend to be areas where BNF has previously been measured. The lowest Mo deposition occurs in the high latitudes, northern parts of North America, Western Australia, Southern Africa, and much of central South America. Atmospheric transport of Mo likely plays an important role in supplying Mo to ecosystems across geologic time, particularly in regions with highly weathered soils.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abouchami W, Näthe K, Kumar A et al (2013) Geochemical and isotopic characterization of the Bodélé Depression dust source and implications for transatlantic dust transport to the Amazon Basin. Earth Planet Sci Lett 380:112–123. https://doi.org/10.1016/j.epsl.2013.08.028

    Article  Google Scholar 

  2. Albani S, Mahowald NM, Perry AT et al (2014) Improved dust representation in the Community Atmosphere Model. J Adv Model Earth Syst 6:541–570. https://doi.org/10.1002/2013MS000279

    Article  Google Scholar 

  3. Albani S, Mahowald NM, Winckler G et al (2015a) Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives. Clim Past 11:869–903. https://doi.org/10.5194/cp-11-869-2015

    Article  Google Scholar 

  4. Albani S, Mahowald NM, Winckler G et al (2015b) Tweleve thousand years of dust: the Holocene global dust cycle constrained by natural archives. Clim Past 11:869–2015. https://doi.org/10.5194/cp-11-869-2015

    Article  Google Scholar 

  5. Albani S, Balkanski Y, Mahowald N et al (2018) Aerosol-climate interactions during the last glacial maximum. Curr Clim Chang Reports 4:99–114. https://doi.org/10.1007/s40641-018-0100-7

    Article  Google Scholar 

  6. Arnórsson S, Óskarsson N (2007) Molybdenum and tungsten in volcanic rocks and in surface and %3c100 °C ground waters in Iceland. Geochim Cosmochim Acta 71:284–304. https://doi.org/10.1016/j.gca.2006.09.030

    Article  Google Scholar 

  7. Artaxo P, Maenhaut W, Storms H, Van Grieken R (1990) Aerosol characteristics and sources for the Amazon Basin during the wet season. J Geophys Res 95:16971–16985. https://doi.org/10.1029/JD095iD10p16971

    Article  Google Scholar 

  8. Barron AR, Wurzburger N, Bellenger JP et al (2009) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci 2:42–45. https://doi.org/10.1038/ngeo366

    Article  Google Scholar 

  9. Betancourt DA, Loveless TM, Brown JW, Bishop PE (2008) Characterization of diazotrophs containing Mo-independent nitrogenases, isolated from diverse natural environments. Appl Environ Microbiol 74:3471–3480. https://doi.org/10.1128/AEM.02694-07

    Article  Google Scholar 

  10. Boonpeng C, Polyiam W, Sriviboon C et al (2017) Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale. Environ Sci Pollut Res 24:12393–12404. https://doi.org/10.1007/s11356-017-8893-9

    Article  Google Scholar 

  11. Bozlaker A, Spada NJ, Fraser MP, Chellam S (2014) Elemental characterization of PM2.5 and PM10 emitted from light duty vehicles in the Washburn Tunnel of Houston, Texas: release of rhodium, palladium, and platinum. Environ Sci Technol 48:54–62. https://doi.org/10.1021/es4031003

    Article  Google Scholar 

  12. Bozlaker A, Prospero JM, Price J, Chellam S (2018) Linking Barbados mineral dust aerosols to North African sources using elemental composition and radiogenic Sr, Nd, and Pb isotope signatures. J Geophys Res Atmos 123:1384–1400. https://doi.org/10.1002/2017JD027505

    Article  Google Scholar 

  13. Brahney J, Mahowald N, Ward DS et al (2015) Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry? Glob Biogeochem Cycles 29:1369–1383. https://doi.org/10.1002/2015GB005137

    Article  Google Scholar 

  14. Bristow CS, Drake N, Armitage S (2009) Deflation in the dustiest place on Earth: The Bodélé Depression, Chad. Geomorphology 105:50–58. https://doi.org/10.1016/j.geomorph.2007.12.014

    Article  Google Scholar 

  15. Cao Z, Yang Y, Lu J, Zhang C (2011) Atmospheric particle characterization, distribution, and deposition in Xi’an, Shaanxi Province, Central China. Environ Pollut 159:577–584. https://doi.org/10.1016/j.envpol.2010.10.006

    Article  Google Scholar 

  16. Carn SA, Fioletov VE, Mclinden CA et al (2017) A decade of global volcanic SO2 emissions measured from space. Sci Rep 7:1–12. https://doi.org/10.1038/srep44095

    Article  Google Scholar 

  17. Carslaw KS, Gordon H, Hamilton DS et al (2017) Aerosols in the pre-industrial atmosphere. Curr Clim Chang Rep 3:1–15. https://doi.org/10.1007/s40641-017-0061-2

    Article  Google Scholar 

  18. Chadwick OA, Derry LA, Vitousek PM et al (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497. https://doi.org/10.1038/17276

    Article  Google Scholar 

  19. Chi CL, Hu Y, Ribbe MW (2009) Unique features of the nitrogenase VFe protein from Azotobacter vinelandii. Proc Natl Acad Sci USA 106:9209–9214. https://doi.org/10.1073/pnas.0904408106

    Article  Google Scholar 

  20. Cleveland CC, Townsend AR, Schimel DS et al (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycle 13:623–645. https://doi.org/10.1029/1999GB900014

    Article  Google Scholar 

  21. Collier RW (1985) Molybdenum in the Northeast Pacific Ocean. Limnol Oceanogr 30:1351–1354. https://doi.org/10.4319/lo.1985.30.6.1351

    Article  Google Scholar 

  22. Crowe BM, Finnegan DL, Zoller WH, Boynton WV (1987) Trace element geochemistry of volcanic gases and particles from 1983–1984 eruptive episodes of Kilauea Volcano. J Geophys Res Solid Earth 92:13708–13714. https://doi.org/10.1029/jb092ib13p13708

    Article  Google Scholar 

  23. Darnajoux R, Magain N, Renaudin M et al (2019) Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests. Proc Natl Acad Sci USA 116:201913314. https://doi.org/10.1073/pnas.1913314116

    Article  Google Scholar 

  24. Dong Z, Qin D, Qin X et al (2017) Changes in precipitating snow chemistry with seasonality in the remote Laohugou glacier basin, western Qilian Mountains. Environ Sci Pollut Res 24:11404–11414. https://doi.org/10.1007/s11356-017-8778-y

    Article  Google Scholar 

  25. Dynarski KA, Houlton BZ (2018) Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytol 217:1050–1061. https://doi.org/10.1111/nph.14905

    Article  Google Scholar 

  26. Eady RR (1996) Structure−function relationships of alternative nitrogenases. Chem Rev 96:3013–3030. https://doi.org/10.1021/cr950057h

    Article  Google Scholar 

  27. Font J, Boutin J, Reul N et al (2013) SMOS first data analysis for sea surface salinity determination. Int J Remote Sens 34:3654–3670. https://doi.org/10.1080/01431161.2012.716541

    Article  Google Scholar 

  28. Gong SL, Barrie LA, Blanchet J-P (1997) Modeling sea-salt aerosols in the atmosphere: 1. Model development. J Geophys Res Atmos 102:3805–3818. https://doi.org/10.1029/96JD02953

    Article  Google Scholar 

  29. Helz GR, Vorlicek TP (2019) Precipitation of molybdenum from euxinic waters and the role of organic matter. Chem Geol 509:178–193. https://doi.org/10.1016/j.chemgeo.2019.02.001

    Article  Google Scholar 

  30. Hinkley TK, Le Cloarec MF, Lambert G (1994) Fractionation of families of major, minor, and trace metals across the melt-vapor interface in volcanic exhalations. Geochim Cosmochim Acta 58:3255–3263. https://doi.org/10.1016/0016-7037(94)90053-1

    Article  Google Scholar 

  31. Hobbie SE, Vitousek PM (2000) Nutrient limitation of decomposition in hawaiian forests. Ecology 81:1867–1877. https://doi.org/10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2

    Article  Google Scholar 

  32. Hong S, Barbante C, Boutron C et al (2004) Atmospheric heavy metals in tropical South America during the past 22,000 years recorded in a high altitude ice core from Sajama, Bolivia. J Environ Monit 6:322–326. https://doi.org/10.1039/b314251e

    Article  Google Scholar 

  33. Hong S, Lee K, Hou S et al (2009) An 800-year record of atmospheric As, Mo, Sn, and Sb in central Asia in high-altitude ice cores from Mt. Qomolangma (Everest), Himalayas. Environ Sci Technol 43:8060–8065. https://doi.org/10.1021/es901685u

    Article  Google Scholar 

  34. Huneeus N, Schulz M, Balkanski Y et al (2011) Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11:7781–7816. https://doi.org/10.5194/acp-11-7781-2011

    Article  Google Scholar 

  35. King EK, Thompson A, Chadwick OA, Pett-Ridge JC (2016) Molybdenum sources and isotopic composition during early stages of pedogenesis along a basaltic climate transect. Chem Geol 445:54–67. https://doi.org/10.1016/j.chemgeo.2016.01.024

    Article  Google Scholar 

  36. Koren I, Kaufman YJ, Washington R et al (2006) The Bodélé depression-a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environ Res Lett 1:1–5. https://doi.org/10.1088/1748-9326/1/1/014005

    Article  Google Scholar 

  37. Kulkarni P, Chellam S, Fraser MP (2006) Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX. Atmos Environ 40:508–520. https://doi.org/10.1016/j.atmosenv.2005.09.063

    Article  Google Scholar 

  38. Kuo CY, Wang JY, Chang SH, Chen MC (2009) Study of metal concentrations in the environment near diesel transport routes. Atmos Environ 43:3070–3076. https://doi.org/10.1016/j.atmosenv.2009.03.028

    Article  Google Scholar 

  39. Lawrence CR, Neff JC (2009) The contemporary physical and chemical flux of aeolian dust: a synthesis of direct measurements of dust deposition. Chem Geol 267:46–63. https://doi.org/10.1016/j.chemgeo.2009.02.005

    Article  Google Scholar 

  40. Ley RE, D’Antonio CM (1998) Exotic grass invasion alters potential rates of N fixation in Hawaiian woodlands. Oecologia 113:179–187. https://doi.org/10.1007/s004420050366

    Article  Google Scholar 

  41. Liu X, Easter RC, Ghan SJ et al (2011) Toward a minimal representation of aerosol direct and indirect effects: model description and evaluation. Geosci Model Dev Discuss 4:3485–3598. https://doi.org/10.5194/gmdd-4-3485-2011

    Article  Google Scholar 

  42. Maher BA, Prospero JM, Mackie D et al (2010) Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Rev 99:61–97. https://doi.org/10.1016/j.earscirev.2009.12.001

    Article  Google Scholar 

  43. Mahowald N (2003) Interannual variability in atmospheric mineral aerosols from a 22-year model simulation and observational data. J Geophys Res 108:4352. https://doi.org/10.1029/2002JD002821

    Article  Google Scholar 

  44. Mahowald N, Kohfeld K, Hansson M et al (1999) Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J Geophys Res Atmos 104:15895–15916. https://doi.org/10.1029/1999JD900084

    Article  Google Scholar 

  45. Mahowald NM, Baker AR, Bergametti G et al (2005) Atmospheric global dust cycle and iron inputs to the ocean. Glob Biogeochem Cycles 19:1–15. https://doi.org/10.1029/2004GB002402

    Article  Google Scholar 

  46. Mahowald NM, Lamarque J-F, Tie XX, Wolff E (2006) Sea-salt aerosol response to climate change: Last Glacial Maximum, preindustrial, and doubled carbon dioxide climates. J Geophys Res Atmos. https://doi.org/10.1029/2005JD006459

    Article  Google Scholar 

  47. Mahowald N, Jickells TD, Baker AR et al (2008) Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Glob Biogeochem Cycles. https://doi.org/10.1029/2008GB003240

    Article  Google Scholar 

  48. Mahowald NM, Kloster S, Engelstaedter S et al (2010) Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos Chem Phys 10:10875–10893. https://doi.org/10.5194/acp-10-10875-2010

    Article  Google Scholar 

  49. Mahowald N, Albani S, Engelstaedter S et al (2011) Model insight into glacial-interglacial paleodust records. Quat Sci Rev. https://doi.org/10.1016/j.quascirev.2010.09.007

    Article  Google Scholar 

  50. Manheim FT, Landergren S (1978) Molybdenum. In: Handbook of Geochemistry. p V. II/5, Sections 42 BO.

  51. Marks JA, Perakis SS, King EK, Pett-Ridge J (2015) Soil organic matter regulates molybdenum storage and mobility in forests. Biogeochemistry 125:167–183. https://doi.org/10.1007/s10533-015-0121-4

    Article  Google Scholar 

  52. Mather TA, Witt MLI, Pyle DM et al (2012) Halogens and trace metal emissions from the ongoing 2008 summit eruption of Kilauea volcano, Hawai’i. Geochim Cosmochim Acta 83:292–323. https://doi.org/10.1016/j.gca.2011.11.029

    Article  Google Scholar 

  53. Matzek V, Vitousek P (2003) Nitrogen fixation in bryophytes, lichens, and decaying wood along a soil-age gradient in Hawaiian montane rain forest. Biotropica 35:12–19. https://doi.org/10.1111/j.1744-7429.2003.tb00257.x

    Article  Google Scholar 

  54. McGee D, deMenocal P, Winckler G et al (2013) The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet Sci Lett 371–273:163–176

    Article  Google Scholar 

  55. McRose DL, Zhang X, Kraepiel AML, Morel FMM (2017) Diversity and activity of alternative nitrogenases in sequenced genomes and coastal environments. Front Microbiol 8:1–13. https://doi.org/10.3389/fmicb.2017.00267

    Article  Google Scholar 

  56. Mulitza S, Heslop D, Pittauerova D et al (2010) Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466:226–228. https://doi.org/10.1038/nature09213

    Article  Google Scholar 

  57. Mus F, Alleman AB, Pence N et al (2018) Exploring the alternatives of biological nitrogen fixation. Metallomics 10:523–538. https://doi.org/10.1039/c8mt00038g

    Article  Google Scholar 

  58. Na K, Cocker DR (2009) Characterization and source identification of trace elements in PM2.5 from Mira Loma. Southern California Atmos Res 93:793–800. https://doi.org/10.1016/j.atmosres.2009.03.012

    Article  Google Scholar 

  59. Nakagawa Y, Takano S, Firdaus M (2012) The molybdenum isotopic composition of the modern ocean. Geochem J 46:131–141. https://doi.org/10.2343/geochemj.1.0158

    Article  Google Scholar 

  60. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49. https://doi.org/10.1038/338047a0

    Article  Google Scholar 

  61. Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob Biogeochem Cycles. https://doi.org/10.1029/2003GB002145

    Article  Google Scholar 

  62. Pearson HL, Vitousek PM (2002) Soil phosphorus fractions and symbiotic nitrogen fixation across a substrate-age gradient in Hawaii. Ecosystems 5:587–596. https://doi.org/10.1007/s10021-002-0172-y

    Article  Google Scholar 

  63. Perakis SS, Pett-Ridge JC, Catricala CE (2017) Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests. Biogeochemistry 134:41–55. https://doi.org/10.1007/s10533-017-0341-x

    Article  Google Scholar 

  64. Prospero JM, Charlson RJ, Mohnen V et al (1983) The atmospheric aerosol system: an overview. Rev Geophys Sp Phys 21:1607–1629. https://doi.org/10.1029/RG021i007p01607

    Article  Google Scholar 

  65. Quesada CA, Lloyd J, Anderson LO et al (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–1440. https://doi.org/10.5194/bg-8-1415-2011

    Article  Google Scholar 

  66. Robson RL, Eady RR, Richardson TH et al (1986) The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature 322:388–390. https://doi.org/10.1038/322388a0

    Article  Google Scholar 

  67. Rousk K, Degboe J, Michelsen A et al (2016) Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems. New Phytol 214:97–107. https://doi.org/10.1111/nph.14331

    Article  Google Scholar 

  68. Sansone FJ, Benitez-Nelson CR, Resing JA et al (2002) Geochemistry of atmospheric aerosols generated from lava-seawater interactions. Geophys Res Lett 29:41-1–49-4. https://doi.org/10.1029/2001GL013882

    Article  Google Scholar 

  69. Seefeldt LC, Yang ZY, Duval S, Dean DR (2013) Nitrogenase reduction of carbon-containing compounds. Biochim Biophys Acta 1827:1102–1111. https://doi.org/10.1016/j.bbabio.2013.04.003

    Article  Google Scholar 

  70. Siebert C, Pett-Ridge JC, Opfergelt S et al (2015) Molybdenum isotope fractionation in soils: Influence of redox conditions, organic matter, and atmospheric inputs. Geochim Cosmochim Acta 162:1–24. https://doi.org/10.1016/j.gca.2015.04.007

    Article  Google Scholar 

  71. Sierra-Hernández MR, Gabrielli P, Beaudon E et al (2018) Atmospheric depositions of natural and anthropogenic trace elements on the Guliya ice cap (northwestern Tibetan Plateau) during the last 340 years. Atmos Environ 176:91–102. https://doi.org/10.1016/j.atmosenv.2017.11.040

    Article  Google Scholar 

  72. Spada N, Bozlaker A, Chellam S (2012) Multi-elemental characterization of tunnel and road dusts in Houston, Texas using dynamic reaction cell-quadrupole-inductively coupled plasma-mass spectrometry: Evidence for the release of platinum group and anthropogenic metals from motor vehicles. Anal Chim Acta 735:1–8. https://doi.org/10.1016/j.aca.2012.05.026

    Article  Google Scholar 

  73. Spiro PA, Jacob DJ, Logan JA (1992) Global inventory of sulfur emissions with 1° × 1° resolution. J Geophys Res 97:6023–6036. https://doi.org/10.1029/91JD03139

    Article  Google Scholar 

  74. Stallard RF, Edmond JM (1981) Geochemistry of the Amazon: 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J Geophys Res 86:9844–9858. https://doi.org/10.1029/JC086iC10p09844

    Article  Google Scholar 

  75. Stanton DE, Batterman SA, Von Fischer JC, Hedin LO (2019) Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum. Ecology 100:1–8. https://doi.org/10.1002/ecy.2795

    Article  Google Scholar 

  76. Struthers H, Ekman AML, Glantz P et al (2013) Climate-induced changes in sea salt aerosol number emissions: 1870 to 2100. J Geophys Res Atmos 118:670–682. https://doi.org/10.1002/jgrd.50129

    Article  Google Scholar 

  77. Swap R, Garstang M, Greco S et al (1992) Saharan dust in the Amazon Basin. Tellus B 44B:133–149. https://doi.org/10.1034/j.1600-0889.1992.t01-1-00005.x

    Article  Google Scholar 

  78. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241. https://doi.org/10.1029/95RG00262

    Article  Google Scholar 

  79. Tegen I, Schepanski K (2009) The global distribution of mineral dust. IOP Conf Ser Earth Environ Sci 7:012001. https://doi.org/10.1088/1755-1307/7/1/012001

    Article  Google Scholar 

  80. Van de Velde K, Ferrari C, Barbante C et al (1999) A 200 year record of atmospheric cobalt, chromium, molybdenum, and antimony in high altitude alpine firn and ice. Environ Sci Technol 33:3495–3501. https://doi.org/10.1021/es990066y

    Article  Google Scholar 

  81. Vitousek PM, Walker LR (1989) Biological invasion by Myrica Faya in Hawai’i: Plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265. https://doi.org/10.2307/1942601

    Article  Google Scholar 

  82. Wang Y-P, Houlton BZ (2009) Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback. Geophys Res Lett 36:L24403. https://doi.org/10.1029/2009GL041009

    Article  Google Scholar 

  83. Wolff E, Rankin A, Roethlisberger R (2003) An ice core indicator of Antarctic sea ice production? Geophys Res Lett 30:2158. https://doi.org/10.1029/2003GL018454

    Article  Google Scholar 

  84. Wurzburger N, Bellenger JP, Kraepiel AML, Hedin LO (2012) Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests. PLoS ONE 7:1–7. https://doi.org/10.1371/journal.pone.0033710

    Article  Google Scholar 

  85. Yu H, Chin M, Yuan T et al (2015) The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys Res Lett 42:1984–1991. https://doi.org/10.1002/2015GL063040

    Article  Google Scholar 

  86. Zender C, Miller R, Tegen I (2004) Quantifying Mineral Dust Mass Budgets: Terminology, Constraints, and Current Estimates. Eos (Washington DC) 85:509–512. https://doi.org/10.1029/2003JD003483

    Article  Google Scholar 

  87. Zhang X, McRose DL, Darnajoux R et al (2016) Alternative nitrogenase activity in the environment and nitrogen cycle implications. Biogeochemistry 127:189–198. https://doi.org/10.1007/s10533-016-0188-6

    Article  Google Scholar 

Download references

Acknowledgements

We thank Gwyneth W. Gordon and Ariel D. Anbar at ASU for help with the analysis of the dust and sediment samples, and Tim Fahey and Christopher Neill for comments on the manuscript. This work was funded by a grant from the David R. Atkinson Center for a Sustainable Future to R.W.H, R.M., N.M.M., and Murray McBride. M.Y.W. was supported by an NSF IGERT Fellowship and an NSF Graduate Research Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michelle Y. Wong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: John Harrison.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong, M.Y., Mahowald, N.M., Marino, R. et al. Natural atmospheric deposition of molybdenum: a global model and implications for tropical forests. Biogeochemistry 149, 159–174 (2020). https://doi.org/10.1007/s10533-020-00671-w

Download citation

Keywords

  • Atmospheric dust
  • Sea-salt aerosols
  • Saharan dust
  • Sahel region
  • Bodélé depression
  • Amazon basin
  • Tropical forests
  • Nitrogen fixation