Skip to main content

Advertisement

Log in

Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Biological nitrogen fixation (BNF), a key reaction of the nitrogen cycle, is catalyzed by the enzyme nitrogenase. The best studied isoform of this metalloenzyme requires molybdenum (Mo) at its active center to reduce atmospheric dinitrogen (N2) into bioavailable ammonium. The Mo-dependent nitrogenase is found in all diazotrophs and is the only nitrogenase reported in diazotrophs that form N2-fixing symbioses with higher plants. In addition to the canonical Mo nitrogenase, two alternative nitrogenases, which use either vanadium (V) or iron (Fe) instead of Mo are known to fix nitrogen. They have been identified in ecologically important groups including free-living bacteria in soils and freshwaters and as symbionts of certain cryptogamic covers. Despite the discovery of these alternative isoforms more than 40 years ago, BNF is still believed to primarily rely on Mo. Here, we review existing studies on alternative nitrogenases in terrestrial settings, spanning inland forests to coastal ecosystems. These studies show frequent Mo limitation of BNF, ubiquitous distribution of alternative nitrogenase genes and significant contributions of alternative nitrogenases to N2 fixation in ecosystems ranging from the tropics to the subarctic. The effect of temperature on nitrogenase isoform activity and regulation is also discussed. We present recently developed methods for measuring alternative nitrogenase activity in the field and discuss the associated analytical challenges. Finally, we discuss how the enzymatic diversity of nitrogenase forces a re-examination of existing knowledge gaps and our understanding of BNF in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anbar AD, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297:1137–1142

    Google Scholar 

  • Attridge EM, Rowell P (1997) Growth, heterocyst differentiation and nitrogenase activity in the cyanobacteria Anabaena variabillis and Anabaena cylindrica in response to molybdenum and vanadium. New Phytol 135:517–526

    Google Scholar 

  • Barron AR, Wurzberger N, Bellenger JP, Wright SJ, Kraepiel AML, Hedin LO (2009) Molybdenum limits nitrogen fixation in tropical forest soils. Nat Geosci 2:42–45

    Google Scholar 

  • Batterman SA, Hall JS, Turnet BL, Hedin LO, Kimiko Lahaela Walter J, Sheldon P, van Breugel M (2018) Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecol Lett 21:1486–1495

    Google Scholar 

  • Bellenger JP, Wichard T, Kraepiel AML (2008a) Vanadium requirements and uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii. Appl Environ Microbiol 74:1478–1484

    Google Scholar 

  • Bellenger JP, Wichard T, Kustka AB, Kraepiel AML (2008b) Nitrogen fixing soil bacterium uses catechol siderophores for molybdenum and vanadium acquisition. Nat Geosci 1:243–246

    Google Scholar 

  • Bellenger JP, Wichard T, Xu Y, Kraepiel AM (2011) Essential metals for nitrogen fixation in a free-living N(2)-fixing bacterium: chelation, homeostasis and high use efficiency. Environ Microbiol 13:1395–1411

    Google Scholar 

  • Bellenger JP, Xu Y, Zhang X, Morel FMM, Kraepiel AM (2014) Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacteria in soils. Soil Biol Biochem 69:413–420

    Google Scholar 

  • Betancourt DA, Loveless TM, Brown JW, Bishop PE (2008) Characterization of diazotrophs containing Mo-independent nitrogenase, isolated from diverse natural environments. Appl Environ Microbiol 74:3471–3480

    Google Scholar 

  • Bishop PE, Premakumar R (1992) Alternative nitrogen fixation systems. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, New York

    Google Scholar 

  • Bishop PE, Jarlenski DML, Hetherington DR (1980) Evidence for an alternative nitrogen fixation system in Azotoacter vinelandii. Proc Nat Acad Sci USA 77:7342–7346

    Google Scholar 

  • Bishop PE, Jarlenski DML, Hetherington DR (1982) Expression of an alternative nitrogen fixation system in Azotobacter vinelandii. J Bacteriol 150:1244–1251

    Google Scholar 

  • Bishop PE, Premakumar R, Dean DR, Jacobson MR, Chnisnell JR, Rizzo TM, Kopczynski J (1986) Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science 232:92–94

    Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Google Scholar 

  • Boison G, Steingen C, Stal LJ, Bothe H (2006) The rice field cyanobacteria Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase. Arch Microbiol 186:367–376

    Google Scholar 

  • Bowen JL, Babbin AR, Kearns PJ, Ward BB (2014) Connecting the dots: linking nitrogen cycle gene expression to nitrogen fluxes in marine sediment mesocosms. Front Microbiol 5:429

    Google Scholar 

  • Boyd ES, Hamilton TL, Peters JW (2011) An alternative path for the evolution of biological nitrogen fixation. Front Microbiol 2:205

    Google Scholar 

  • Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96:2983–3012

    Google Scholar 

  • Chakraborty B, Samaddar KR (1995) Evidence for the occurence of an alternative nitrogenase system in Azospirillum brasilense. FEMS Microbiol Let 127:127–131

    Google Scholar 

  • Chapin DM, Bliss LC, Bledsoe LJ (1990) Environmental regulation of nitrogen fixation in a high artic lowland ecosystem. Can J Bot 69:2744–2755

    Google Scholar 

  • Chatterjee R, Allen RM, Ludden PW, Shah VK (1997) In vitro synthesis of the iron-molybdenum cofactor and maturation of the nif-encoded apodinitrogenase. J Biol Chem 272:21604–21608

    Google Scholar 

  • Chen SC, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M, Said N, Popp D, Calabrese F, Stryhanyuk H, Jaekel U, Zhu YG, Joye SB, Richnow HH, Widdel F, Musat F (2019) Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 568:108–111

    Google Scholar 

  • Chien YT, Auerbuch V, Brabban AD, Zinder SH (2000) Analysis of genes encoding an alternative nitrogenase in the archaeon Methanosarcina barkeri 227. J Bacteriol 182:3247–3253

    Google Scholar 

  • Chisnell JR, Premakumar R, Bishop PE (1988) Purification of the second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J Bacteriol 170:27–33

    Google Scholar 

  • Christiansen CF, Loscher CR (2019) Facets of diazotrophy in the OMZ off Peru revisited- what we couldn’t see from a single marker gene approach. Biology. https://doi.org/10.1101/558072

    Article  Google Scholar 

  • Collier RW (1985a) Molybdenum in the Northeast Pacific Ocean. Limnol Oceanogr 30:1351–1354

    Google Scholar 

  • Collier RW (1985b) Particulate and dissolved vanadium in the North Pacific Ocean. Nature 309:441–444

    Google Scholar 

  • Crews TE, Farrington H, Vitousek PM (2000) Changes in asymbiotic, heterotrophic nitrogen fixation on leaf litter of Metrosideros polymorpha with long-term ecosystem development in Hawaii. Ecosystems 3:386–395

    Google Scholar 

  • Dabundo R, Lehmann MF, Treibergs L, Tobias CR, Altabet MA, Moisander PH, Granger J (2014) The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS ONE 9:e110335

    Google Scholar 

  • Darnajoux R, Constantin J, Miadlikowska J, Lutzoni F, Bellenger JP (2014) Is vanadium a biometal for boreal cyanolichens? New Phytol 202:765–771

    Google Scholar 

  • Darnajoux R, Lutzoni F, Miadlikowska J, Bellenger JP (2015) Determination of elemental baseline using peltigeralean lichens from Northeastern Canada (Quebec): initial data collection for long term monitoring of the impact of global climate change on boreal and subarctic area in Canada. Sci Total Environ 533:1–7

    Google Scholar 

  • Darnajoux R, Zhang X, McRose DL, Miadlikowska J, Lutzoni F, Kraepiel AM, Bellenger JP (2017) Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current biological nitrogen fixation estimates. New Phytol 213:680–689

    Google Scholar 

  • Darnajoux R, Magain N, Renaudin M, Lutzoni F, Bellenger JP, Zhang X (2019) Molybdenum threshold for ecosystem-scale alternative vanadium nitorgenase activity in boreal forests. Proc Natl Acad Sci USA 116:24682–24688

    Google Scholar 

  • Davis R, Lehmann L, Petrovich R, Shah VK, Roberts GP, Ludden PW (1996) Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum. J Bacteriol 178:1445–1450

    Google Scholar 

  • de Bruijn FJ (ed) (2015) Biological nitrogen fixation. Wiley, Hoboken

    Google Scholar 

  • DeLuca TH, Zackrison O, Nilsson M-C, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920

    Google Scholar 

  • Dilworth MJ, Loneragan JF (1991) An alternative nitrogenase is not expressed in molybdenum-deficient legume root nodules. New Phytol 118:303–308

    Google Scholar 

  • Dilworth MJ, Eady RR, Robson RL, Miller RW (1987) Ethane formation from acetylene as a potential test for vanadium nitrogenase in vivo. Nature 327:167–168

    Google Scholar 

  • Dilworth MJ, Eady RR, Eldridge ME (1988) The vanadium nitrogenase of Azotobacter chroococcum: Reduction of acetylene and ethylene to ethane. Biochem J 249:745–751

    Google Scholar 

  • Dilworth MJ, Eldridge ME, Eady RR (1993) The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: effect of elevated temperature on N2 reduction. Biochem J 289:395–400

    Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631

    Google Scholar 

  • Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13:162

    Google Scholar 

  • Dynarski KA, Houlton BZ (2018) Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytol 217:1050–1061

    Google Scholar 

  • Eady RR (1996) Structure-function relationships of alternative nitrogenase. Chem Rev 96:3013–3030

    Google Scholar 

  • Eady RR, Robson RL (1984) Characteristics of N2 fixation in Mo-limited batch and continuous cultures of azotobacter vinelandii. Biochem J 224:853–862

    Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Budel B, Andreae MO, Poschl U (2012) Contribution of cryptogamic cover to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Google Scholar 

  • Erickson BD, Helz GR (2000) Mo (IV) speciation in sulfidic water: stability and lability of thiomolybdates. Geochim Cosmochim Acta 64:1149–1158

    Google Scholar 

  • Fallik E, Chan YK, Robson RL (1991) Determination of alternative nitrogenases in aerobic gram-negative nitrogen-fixing bacteria. J Bacteriol 173:365–371

    Google Scholar 

  • Fukuda H, Fujii T, Ogawa T (1984) Microbial production of C2-hydrocarbons, ethane, ethylene and acetylene. Agri Biol Chem 48:1363–1365

    Google Scholar 

  • Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13:1790–1799

    Google Scholar 

  • Gagunashvili AN, Andresson OS (2018) Distinctive characters of Nostoc genomes in cyanolichens. BMC Genomics 19:434

    Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles; past, present and future. Biogeochemistry 70:153–226

    Google Scholar 

  • Goldberg S, Forster HS, Godfrey CL (1996) Molybdenum adsorption on oxydes, clay minerals, and soils. Soil Sci Soc Am J 60:425–432

    Google Scholar 

  • Graham BM, Hamilton RD, Campbell NER (1980) Comparison of the nitrogen-15 uptake and acetylene reduction methods for estimating the rates of nitrogen fixation by freshwater blue-green algae. Can J Fish Aquat Sci 37:488–493

    Google Scholar 

  • Gupta UC (1997) Molybdenum in agriculture. Cambridge University Press, Cambridge

    Google Scholar 

  • Hafner H, Ndunguru BJ, Bationo A, Marschner H (1992) Effect of nitrogen, phosphorus and molybdenum application on growth and synbiotic N2-fixation of groundnut in an acid sandy soil in Niger. Fert Res 31:69–77

    Google Scholar 

  • Hales BJ (1990) Alternative nitrogenase. Adv Inorg Biochem 8:165–198

    Google Scholar 

  • Hamilton TL, Ludwig M, Dixon R, Boyd ES, Dos Santos PC, Setubal JC, Bryant DA, Dean DR, Peters JW (2011) Transcriptional profiling of nitrogen fixation in Azotobacter vinelandii. J Bacteriol 193:4477–4486

    Google Scholar 

  • Hardy RWF, Holsten RD, Jackson RD, Burns RC (1968) Acetylene-ethylene assay for N2 fixation—laboratory and field evaluation. Plant Physiol 43:1185–1207

    Google Scholar 

  • Hardy RWF, Burns RC, Holsten RD (1973) Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–81

    Google Scholar 

  • Harris DF, Lukoyanov DA, Kallas H, Trncik C, Yang ZY, Compton P, Kelleher N, Einsle O, Dean DR, Hoffman BM (2019) Mo-, V- and Fe-nitrogenases use a universal eight-electron reduction-elimination mechanism to achieve N2 reduction. Biochemistry 58:3293–3301

    Google Scholar 

  • Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–635

    Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292

    Google Scholar 

  • Helz GR, Miller CV, Charnock JM, Mosselmans JFW, Pattrick RAD, Garner CD, Vaugahn DJ (1996) Mechanism of Mo removal from the sea and its concentration in black shales: EXAFS evidence. Geochim Cosmochim Acta 60:3631–3642

    Google Scholar 

  • Hodkinson BP, Allen JL, Forrest L, Goffinet B, Serusiaux E, Andresson OS, Miao V, Bellenger JP, Lutzoni F (2014) Lichen-symbiotic cyanobacteria associated with Peltigera have an alternative vanadium-dependent nitrogen fixation system. Eur J Phycol 49:11–19

    Google Scholar 

  • Horstmann JL, Denison WC, Silvester WB (1982) 15N2 fixation and Mo enhancement of acetylene reduction by Lobaria spp. New Phytol 92:235–241

    Google Scholar 

  • Hungate BA, Stiling PD, Dijkstra P, Johnson DW, Ketterer ME, Hymus GJ, Hinkle CR, Drake BG (2004) CO2 elicits long-term decline in nitrogen fixation. Science 304:1291

    Google Scholar 

  • Jacobitz S, Bishop PE (1992) Regulation of nitrogenase-2 in Azotobacter vinelandii by ammonium, molybdenum, and vanadium. J Bacteriol 174:3884–3888

    Google Scholar 

  • Jacobson MR, Premakumar R, Bishop PE (1986) Transcriptional regulation of nitrogen fixation by molybdenum in Azotobacter vinelandii. J Bacteriol 167:480–486

    Google Scholar 

  • Jean ME, Phalyvong K, Forest Drolet J, Bellenger JP (2013) Molybdenum and phosphorus limitation of asymbiotic nitrogen fixation in forests of Eastern Canada: influence of the vegetative cover and seasonal variability. Soil Biol Biochem 67:140–146

    Google Scholar 

  • Joerger RD, Bishop PE (1988) Bacterial alternative nitrogen fixation systems. Crit Rev Microbiol 16:1–14

    Google Scholar 

  • Joerger RD, Jacobson MR, Premakumar R, Wolfinger ED, Bishop PE (1989) Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii. J Bacteriol 171:1075–1086

    Google Scholar 

  • Johnson D, Hale B (2004) White birch (Betula papyrifera Marshall) foliar litter decomposition in relation to trace metal atmospheric inputs at metal-contaminated and uncontaminated sites near Sudbury, Ontario and Rouyn-Noranda, Quebec, Canada. Environ Pollut 127:65–72

    Google Scholar 

  • Jouogo Noumsi C, Pourhassan N, Darnajoux R, Deicke M, Wichard T, Burrus V, Bellenger JP (2016) Effect of organic matter on nitrogenase metal cofactors homeostasis in Azotobacter vinelandii under diazotrophic conditions. Environ Microbiol Rep 8:76–84

    Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants, 4th edn. CRC Press, Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  • Kentemich T, Danneberg G, Hundeshagen B, Bothe H (1988) Evidence for the occurrence of the alternative, vanadium-containing nitrogenase in the cyanobacterium Anabaena variabilis. FEMS Microbiol Lett 51:19–24

    Google Scholar 

  • Kim HJ, Galeva N, Larive CK, Alterman M, Graham DW (2005) Purification and physical–chemical properties of methanobactin: a chalkophore from Methylosinus trichosporium OB3b. Biochemistry 44:5140–5148

    Google Scholar 

  • Kraepiel AML, Bellenger JP, Wichard T, Morel FMM (2009) Multiples roles of sidrophores in free-living nitrogen-fixing bacteria. Biometals 22:573–581

    Google Scholar 

  • Kutsche M, Leimkuhler S, Angermuller S, Klipp W (1996) Promoters controlling expression of the alternative nitrogenase and the molybdenum uptake system in Rhodobacter capsulatus are activated by NtrC, independent of sigma54, and repressed by molybdenum. J Bacteriol 178:2010–2017

    Google Scholar 

  • Lagerstrom A, Nilsson MC, Zackrisson O, Wardle DA (2007) Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Ecology 21:1027–1033

    Google Scholar 

  • Lang F, Kaupenjohann M (1999) Molybdenum fractions and mobilization kinetics in acid forest soils. J Plant Nut Soil Sci 162:309–314

    Google Scholar 

  • Lawrey JD (1978) Trace metal dynamics in decomposing leaf litter in habitats variously influenced by coal strip mining. Can J Bot 56:953–962

    Google Scholar 

  • LeBauer D, Treseder K (2008) Nitrogen limitation of net primary productivity. Ecology 89:371–379

    Google Scholar 

  • Lee CC, Hu Y, Ribbe MW (2010) Vanadium nitrogenase reduces CO. Science 329:642

  • Liengen L (1999) Conversion factor between acetylene reduction and nitrogen fixation in free-living cyanobacteria from high artic habitats. Can J Microbiol 45:223–229

    Google Scholar 

  • Liermann LJ, Guynn RL, Anbar A, Brantley SL (2005) Production of a molybdophore during metal-targeted dissolution of silicates by soil bacteria. Chem Geol 220:285–302

    Google Scholar 

  • Lindo Z, Whiteley JA (2011) Old trees contribute bio-available nitrogen through canopy bryophytes. Plant Soil 342:141–148

    Google Scholar 

  • Liu D, Clark DJ, Crutchfield JD, Sims JL (1996) Effect of pH of ammonium oxalate extracting solutions of prediction of plant-available molybdenum in soil. Commun Soil Sci Plant Anal 27:2511–2541

    Google Scholar 

  • Loveless TM, Bishop PE (1999) Identification of genes unique to Mo-independent nitrogenase systems in diverse diazotrophs. Can J Microbiol 45:1–6

    Google Scholar 

  • Loveless TM, Saah JR, Bishop PE (1999) Isolation of nitrogen-fixing bacteria containing molybdenum-independent nitrogenases from natural environments. Appl Environ Microbiol 65:4223–4226

    Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Google Scholar 

  • Luxem KE, Leavitt WD, Zhang X (2020a) Large hydrogen isotope fractionations distinguish nitrogenase-derived methane from other sources. https://doi.org/10.1101/2020.04.10.036657

  • Luxem KL, Kraepiel AML, Zhang L, Waldbauer J, Zhang X (2020b) Carbon substrate re-orders relative growth of a bacterium using Mo-, V-, or Fe-nitrogenase for nitrogen fixation. Environ Mirobiol. https://doi.org/10.1111/1462-2920.14955

    Article  Google Scholar 

  • Ma J, Bei Q, Wang X, Lan P, Liu G, Lin X, Liu Q, Lin Z, Liu B, Zhang Y, Jin H, Hu T, Zhu J, Xie Z (2019) Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system. Sci Total Environ 649:686–694

    Google Scholar 

  • Marks JA, Perakis SS, King EK, Pett-Ridge JC (2015a) Soil organic matter regulates molybdenum storage and mobility in forests. Biogeochemistry 125:167–183

    Google Scholar 

  • Marks JA, Pett-Ridge JC, Parakis SS, Allen JL, McCune B (2015b) Response of the nitrogen-fixing lichen Lobaria pulmonaria to phosphorus, molybdenum and vanadium. Ecosphere 6:1–17

    Google Scholar 

  • Martensson AM, Ljunggren HD (1984) A comparison between the acetylene reduction method, the isotope dilution method and the total nitrogen difference method for measuring nitrogen fixation in lucerne (Medicago sativa L.). Plant Soil 81:177–184

    Google Scholar 

  • Masepohl B, Drepper T, Paschen A, Gross S, Pawlowski A, Raabe K, Riedel KU, Klipp W (2002) Regulation of nitrogen fixation in the phototrophic purple bacterium Rhodobacter capsulatus. J Mol Microbiol Biotechnol 4:243–248

    Google Scholar 

  • Masukawa H, Zhang X, Yamazaki E, Iwata S, Nakamura K, Mochimaru M, Inoue K, Sakurai H (2009) Survey of the distribution of different types of nitrogenases and hydrogenases in heterocyst-forming cyanobacteria. Mar Biotechnol (NY) 11:397–409

    Google Scholar 

  • Maynard RH, Premakumar R, Bishop PE (1994) Mo-independent nitrogenase 3 is advantageous for diazotrophic growth of Azotobacter vinelandii on solid medium containing molybdenum. J Bacteriol 176:5583–5586

    Google Scholar 

  • McRose DL, Baars O, Morel FMM, Kraepiel AML (2017a) Siderophore production in Azotobacter vinelandii in response to Fe-, Mo- and V-limitation. Environ Microbiol 19:3595–3605

    Google Scholar 

  • McRose DL, Zhang X, Kraepiel AM, Morel FM (2017b) Diversity and activity of alternative nitrogenases in sequenced genomes and coastal environments. Front Microbiol 8:267

    Google Scholar 

  • Menge DN, Hedin LO (2009) Nitrogen fixation in different biogeochemical niches along a 120 000-year chronosequence in New Zealand. Ecology 90:2190–2201

    Google Scholar 

  • Michelsen A, Rinnan R, Jonasson S (2012) Two decades of experimental manipulations of heaths and forest understory in the subarctic. Ambio 41(Suppl 3):218–230

    Google Scholar 

  • Miller RW, Eady RR (1988) Molybdenum and vanadium nitrogenase of Azotobacter Chroococcum. Biochem J 256:429–432

    Google Scholar 

  • Minchin FR, Witty JF, Sheehy JE, Muller M (1983) A major error in the acetylene reduction assay: decreases in nodular nitrogenase activity under assay conditions. J Exp Bot 34:641–649

    Google Scholar 

  • Mohr W, Grosskopf T, Wallace DW, LaRoche J (2010) Methodological underestimation of oceanic nitrogen fixation rates. PLoS ONE 5:e12583

    Google Scholar 

  • Moisander P, Lehtumaki J, Sivonen K, Kononen K (1996) Comparison of 15N2 and acetylene reduction methods for the measurement of nitrogen fixation by Baltic Sea cyanobacteria. Phycologia 35:140–146

    Google Scholar 

  • Mulholland MR, Bernhardt PW (2005) The effect of growth rate, phosphorus concentration, and temperature on N2 fixation, carbon fixation, and nitrogen release in continuous cultures of Trichodesmium IMS101. Limnol Oceanogr 50:839–849

    Google Scholar 

  • Mulholland MR, Bronk DA, Capone DG (2004) Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101. Aqua Micro Ecol 37:85–94

    Google Scholar 

  • Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW (2018) Exploring the alternatives of biological nitrogen fixation. Metallomics 10:523–538

    Google Scholar 

  • Nagahama K, Yoshino K, Matsuoka M, Sato M, Tanase S, Ogawa T, Fukuda H (1994) Ethylene production by strains of the plant-pathogenic bacterium Pseudomonas syringae depends upon the presence of indigenous plasmids carrying homologous genes for the ethylene-forming enzyme. Microbiology 140:2309–2313

    Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Google Scholar 

  • Ni CV, Yakuninin AF, Gogotov IN (1990) Influence of molybdenum, vanadium, and tungsten on growth and nitrogenase synthesis of the free-living cyanobacterium Anabaena azollae. Microbiology 59:395–398

    Google Scholar 

  • Nohrstedt H (1983) Conversion factor between acetylene reduction and nitrogen fixation in soil: effect of water content and nitrogenase activity. Soil Biol Biochem 15:275–279

    Google Scholar 

  • Oda Y, Samanta SK, Rey FE, Wu L, Liu X, Yan T, Zhou J, Harwood CS (2005) Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J Bacteriol 187:7784–7794

    Google Scholar 

  • Pau RN, Eldridge ME, Lowe DJ, Mitchenall LA, Eady RR (1993) Molybdenum-independent nitrogenase of Azotobacter vinelandii: a function species of alternatice nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Biochem J 293:101–107

    Google Scholar 

  • Perakis SS, Pett-Ridge JC, Catricala CE (2017) Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests. Biogeochemistry 134:41–55

    Google Scholar 

  • Perez CA, Silva WA, Aravena JC, Armesto JJ (2017) Limitations and relevance of biological nitrogen fixation during postglacial succession in cordillera Darwin, Tierra del Fuego, Chile. Arct Antarct Alp Res 49:29–42

    Google Scholar 

  • Peters JW, Boyd ES (2015) Exploring alternative paths for the evolution of biological nitrogen fixation. In: de Bruijn FJ (ed) biological nitrogen fixation. Wiley, Hoboken, NJ

    Google Scholar 

  • Peters JW, Fisher K, Dean DR (1995) Nitrogenase structure and function: a biochemical-genetic perspective. Annu Rev Microbiol 49:335–366

    Google Scholar 

  • Poledniok J, Buhl F (2003) Speciation of vanadium in soil. Talanta 59:1–8

    Google Scholar 

  • Pourhassan N, Bruno S, Davidson Jewell M, Shipley B, Roy S, Bellenger JP (2016) Phosphorus and micronutrient dynamics during gymnosperm and angiosperm litters decomposition in temperate cold forest from Eastern Canada. Geoderma 273:25–31

    Google Scholar 

  • Pratte BS, Sheridan R, James JA, Thiel T (2013) Regulation of V-nitrogenase genes in Anabaena variabilis by RNA processing and by dual repressors. Mol Microbiol 88:413–424

    Google Scholar 

  • Raina R, Reddy MA, Ghosal D, Das HK (1988) Characterization of the gene for the Fe-protein of the vanadium dependent alternative nitrogenase of Azotobacter vinelandii and construction of a Tn5 mutant. Mol Gen Genet 214:121–127

    Google Scholar 

  • Reddy KJ, Gloss SP (1993) Geochemical speciation as related to the mobility of F, Mo and Se in soil leachates. Appl Geochem 2:159–163

    Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a comtemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2013) Relationship among phosphorus, molybdenum and free living nitrogen fixation in tropical rain forests: result from observational and experimental analyses. Biogeochemistry 114:135–147

    Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JM, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    Google Scholar 

  • Rijkenberg MJA, Middag R, Laan P, Gerringa LJA, van Aken HM, Schoemann V, de Jong JTM, de Baar HJW (2014) The distribution of dissolved iron in the west Atlantic ocean. PLoS ONE 9:e101323

    Google Scholar 

  • Robson RL, Eady RR, Richardson TH, Miller RW, Hawkins M, Postgate JR (1986) The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature 322:388–390

    Google Scholar 

  • Rousk K, Jones DL, Deluca TH (2013) Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. Front Microbiol 4:150

    Google Scholar 

  • Rousk K, Degboe J, Michelsen A, Bradley R, Bellenger JP (2017) Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems. New Phytol 214:97–107

    Google Scholar 

  • Rubio LM, Ludden PW (2005) Maturation of nitrogenase: a biochemical puzzle. J Bacteriol 187:405–414

    Google Scholar 

  • Schneider K, Muller A, Schramm U, Klipp W (1991) Demonstration of a molybdenum- and vanadium-independent nitrogenase in a nifHDK-deletion mutant of Rhodobacter capsulatus. Eur J Biochem 195:653–661

    Google Scholar 

  • Schuddekopf K, Hennecke S, Liese U, Kutsche M, Klipp W (1993) Characterization of anf genes specific for the alternative nitrogenase and identification of nif genes required for both nitrogenases in Rhodobacter capsulatus. Mol Microbiol 8:673–684

    Google Scholar 

  • Schwintzer CR, Tjepkema JD (1994) Factors affecting the acetylene to 15N2 conversion ratio in root nodules of Myrica gale 1. Plant Physiol 106:1041–1047

    Google Scholar 

  • Scott DJ, Dean DR, Newton WE (1992) Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an alpha-subunit FeMo cofactor-binding domain. J Biol Chem 267:20002–20010

    Google Scholar 

  • Scott DL, Bradley RL, Bellenger JP, Houle D, Gundale MJ, Rousk K, DeLuca TH (2018) Anthropogenic deposition of heavy metals and phosphorus may reduce biological N2 fixation in boreal forest mosses. Sci Tot Environ 630:203–210

    Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    Google Scholar 

  • Seitzinger SP, Garber JH (1987) Nitrogen fixation and 15N2 calibration of the acetylene reduction assay in coastal marine sediments. Mar Ecol 37:65–73

    Google Scholar 

  • Sellstedt A (1986) Acetylene reduction, H2 evolution and 15N2 fixation in the Alnus incana-Frankia symbiosis. Planta 167:382–386

    Google Scholar 

  • Sigurdsson BD, Medhurst JL, Wallin G, Eggertsson O, Linder S (2013) Growth of mature boreal Norway spruce was not affected by elevated [CO2] and/or air temperature unless nutrient availability was improved. Tree Physiol 33:1192–1205

    Google Scholar 

  • Silvester WB (1989) Molybdenum limitation of asymbiotic nitrogen fixation in forests of pacific northwest America. Soil Biol Biochem 21:283–289

    Google Scholar 

  • Singh R, Guzman MS, Bose A (2017) Anaerobic oxidation of ethane, propane, and butane by marine microbes: a mini review. Front Microbiol 8:2056

    Google Scholar 

  • Smith VR (1984) Effects of abiotic factors on acetylene reduction by cyanobacteria epiphytic on moss at a subantarctic island. Appl Environ Microbiol 48:594–600

    Google Scholar 

  • Srivastava TK, Ahlawat IPS, Panwar JDS (1998) Effect of phosphorous, molybdenum and biofertilizers on productivity of pea (Pisum sativum L.). Ind J Plant Physiol 3:237–239

    Google Scholar 

  • Sullivan BW, Smith WK, Townsend AR, Nasto MK, Reed SC, Chazdon RL, Cleveland CC (2014) Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proc Natl Acad Sci USA 111:8101–8106

    Google Scholar 

  • Thiel T (1993) Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 175:6276–6286

    Google Scholar 

  • Thiel T, Pratte BS (2013) Alternative nitrogenases in Anabaena variabilis: the role of molybdate and vanadate in nitrogenase gene. Adv Microbiol 3:87–95

    Google Scholar 

  • Thiel T, Pratte BS (2014) Regulation of three nitrogenase gene clusters in the cyanobacterium Anabaena variabilis ATCC 29413. Life 4:944–967

    Google Scholar 

  • Thiel T, Pratte B, Zahalak M (2002) Transport of molybdate in the cyanobacterium Anabaena variabilis ATCC 29413. Arch Microbiol 179:50–56

    Google Scholar 

  • Vieira RF, Cardoso EJBN, Vieira C, Casssini STA (1998a) Foliar application of molybdenum in common bean. I. Nitrogenase and reductase activities in a soil high fertility. J Plant Nutr 21:169–180

    Google Scholar 

  • Vieira RF, Vieira C, Cardoso EJBN, Mosquim PR (1998b) Foliar application of molybdenum in common bean.II. Nitrogenase in a soil of low fertility. J Plant Nutr 21:2141–2151

    Google Scholar 

  • Vile M, Wieder RK, Zivkovic T, Scott KD, Vitt DH, Hartsock JA, Iosue CL, Quinn CL, Petix M, Fillingim HM, Popma JMA, Dynarski KA, Jackman TR, Albright CM, Wykoff DD (2014) N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry 121:317–328

    Google Scholar 

  • Vitousek P (1999) Nutrient limitation to nitrogen fixation in young volcanic sites. Ecosystems 2:505–510

    Google Scholar 

  • Vitousek PM, Hobbie S (2000) Heterotrophic nitrogen fixation in decomposing litter: patterns and regulation. Ecology 81:2366–2376

    Google Scholar 

  • Vitousek PM, Menge DN, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc Lond B 368:20130119

    Google Scholar 

  • Vouk VB, Piver WT (1983) Metallic elements in fossil fuel combustion products: amounts and form of emissions and evaluation of carcinogenicity and mutagenicity. Environ Health Perspect 47:201–225

    Google Scholar 

  • Wagner A, Chappaz A, Lyons TW (2017) Molybdenum speciation and burial pathway in weakly sulfidic environments: insights from XAFS. Geochim Cosmochim Acta 206:18–29

    Google Scholar 

  • Wall JD (2004) Rain or shine–a phototroph that delivers. Nat Biotechnol 22:40–41

    Google Scholar 

  • Walmsley J, Kennedy C (1991) Temperature-dependent regulation by molybdenum and vanadium of expression of the structural genes encoding the three nitrogenases in Azotobacter vinelandii. Appl Environ Microbiol 57:622–624

    Google Scholar 

  • Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeochemistry 7:2261–2282

    Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Google Scholar 

  • Werner Klipp BM, Gallon JR, Newton WE (eds) (2004) Genetics and regulation of nitrogen fixation in free-living bacteria. Kluwer Academic Publishers, New-York

    Google Scholar 

  • Wichard T, Bellenger JP, Loison A, Kraepiel AML (2008) Catechols siderophores control tungsten uptake and toxicity in the nitrogen-fixer bacterium Azotobacter vinelandii. Environ Sci Technol 42:2408–2413

    Google Scholar 

  • Wichard T, Bellenger JP, Morel FMM, Kraepiel AML (2009a) Role of the pyoverdine siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors. Environ Sci Technol 43:7218–7224

    Google Scholar 

  • Wichard T, Mishra B, Myneni SCB, Bellenger JP, Kraepiel AML (2009b) Storage and bioavailability of molybdenum in soils increased by organic matter complexation. Nat Geosci 2:625–629

    Google Scholar 

  • Wilson ST, Bottjer D, Church MJ, Karl DM (2012) Comparative assessment of nitrogen fixation methodologies, conducted in the oligotrophic North Pacific Ocean. Appl Environ Microbiol 78:6516–6523

    Google Scholar 

  • Winbourne JB, Brewer SW, Houlton BZ (2017) Iron controls over di-nitrogen fixation in karst tropical forest. Ecology 98:773–781

    Google Scholar 

  • Wolfinger ED, Bishop PE (1991) Nucleotide sequence and mutational analysis of the vnfENX region of Azotobacter vinelandii. J Bacteriol 173:7565–7572

    Google Scholar 

  • Wurzburger N, Bellenger JP, Kraepiel AM, Hedin LO (2012) Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests. PLoS ONE 7:e33710

    Google Scholar 

  • Zahalak M, Pratte B, Werth KJ, Thiel T (2004) Molybdate transport and its effect on nitrogen utilization in the cyanobacterium Anabaena variabilis ATCC 29413. Mol Microbiol 51:539–549

    Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Google Scholar 

  • Zhang X, Sigman DM, Morel FM, Kraepiel AM (2014) Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proc Natl Acad Sci USA 111:4782–4787

    Google Scholar 

  • Zhang X, McRose DL, Darnajoux R, Bellenger JP, Morel FMM, Kraepiel AM (2016) Alternative nitrogenase activity in the environment and nitrogen cycle implications. Biogeochemistry 127:189–198

    Google Scholar 

  • Zheng Y, Harris DF, Yu Z, Fu Y, Poudel S, Ledbetter RN, Fixen KR, Yang Z-Y, Boyd ES, Lidstrom ME, Seefeldt LC, Harwood CS (2018) A pathway for biological methane production using bacterial iron-only nitrogenase. Nat Microbiol 3:281–286

    Google Scholar 

  • Zinoni F, Robson RM, Robson RL (1993) Organization of potential alternative nitrogenase genes from Clostridium pasteurianum. Biochim Biophys Acta 1174:83–86

    Google Scholar 

Download references

Funding

Funding was provided by Natural Sciences and Engineering Research Council of Canada (Grant No. CRC-950-230570), the U.S. National Science Foundation (Grant No. EAR-1631814), and a Simons Foundation/Life Science Research Foundation Postdoctoral Fellowship (to R.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Bellenger.

Additional information

Responsible Editor: Steven Perakis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellenger, J.P., Darnajoux, R., Zhang, X. et al. Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review. Biogeochemistry 149, 53–73 (2020). https://doi.org/10.1007/s10533-020-00666-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-020-00666-7

Keywords