Leaf litter inputs reinforce islands of nitrogen fertility in a lowland tropical forest

Abstract

The role of lowland tropical forest tree communities in shaping soil nutrient cycling has been challenging to elucidate in the face of high species diversity. Previously, we showed that differences in tree species composition and canopy foliar nitrogen (N) concentrations correlated with differences in soil N availability in a mature Costa Rican rainforest. Here, we investigate potential mechanisms explaining this correlation. We used imaging spectroscopy to identify study plots containing 10–20 canopy trees with either high or low mean canopy N relative to the landscape mean. Plots were restricted to an uplifted terrace with relatively uniform parent material and climate. In order to assess whether canopy and soil N could be linked by litterfall inputs, we tracked litter production in the plots and measured rates of litter decay and the carbon and N content of leaf litter and leaf litter leachate. We also compared the abundance of putative N fixing trees and rates of free-living N fixation as well as soil pH, texture, cation exchange capacity, and topographic curvature to assess whether biological N fixation and/or soil properties could account for differences in soil N that were, in turn, imprinted on the canopy. We found no evidence of differences in legume communities, free-living N fixation, or abiotic properties. However, soils beneath high canopy N assemblages received ~ 60% more N via leaf litterfall due to variability in litter N content between plot types. The correlation of N in canopy leaves, leaf litter, and soil suggests that, under similar abiotic conditions, litterfall-mediated feedbacks can help maintain soil N differences among tropical tree assemblages in this diverse tropical forest.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Asner GP, Vitousek PM (2005) Remote analysis of biological invasion and biogeochemical change. Proc Natl Acad Sci 102:4383–4386. https://doi.org/10.1073/pnas.0500823102

    Article  Google Scholar 

  2. Asner GP, Knapp DE, Boardman J et al (2012) Carnegie Airborne Observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens Environ 124:454–465. https://doi.org/10.1016/j.rse.2012.06.012

    Article  Google Scholar 

  3. Asner GP, Martin RE, Tupayachi R et al (2014) Amazonian functional diversity from forest canopy chemical assembly. Proc Natl Acad Sci 111:5604–5609. https://doi.org/10.1073/pnas.1401181111

    Article  Google Scholar 

  4. Asner GP, Martin RE, Anderson CB, Knapp DE (2015) Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens Environ 158:15–27. https://doi.org/10.1016/j.rse.2014.11.011

    Article  Google Scholar 

  5. Asner GP, Knapp DE, Anderson CB et al (2016) Large-scale climatic and geophysical controls on the leaf economics spectrum. Proc Natl Acad Sci 113:1–9. https://doi.org/10.1073/pnas.1604863113

    Article  Google Scholar 

  6. Augusto L, Dupouey J-L, Ranger J (2003) Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann For Sci 60:823–831. https://doi.org/10.1051/forest

    Article  Google Scholar 

  7. Balzotti C, Asner G, Taylor P et al (2016) Environmental controls on canopy foliar N distribution in a Neotropical lowland forest. Ecol Appl 26:2449–2462

    Article  Google Scholar 

  8. Balzotti CS, Asner GP, Taylor PG et al (2017) Topographic distributions of emergent trees in tropical forests of the Osa Peninsula, Costa Rica. Ecography (Cop) 40:829–839. https://doi.org/10.1111/ecog.02062

    Article  Google Scholar 

  9. Buchs DM, Baumgartner PO, Baumgartner-Mora C et al (2009) Late cretaceous to miocene seamount accretion and melange formation in the Osa and Burica Peninsulas (Southern Costa Rica): episodic growth of a convergent margin. Geol Soc Spec Publ 328:411–456. https://doi.org/10.1144/SP328.17

    Article  Google Scholar 

  10. Chadwick KD, Asner GP (2018) Landscape evolution and nutrient rejuvenation reflected in Amazon forest canopy chemistry. Ecol Lett 21:978–988. https://doi.org/10.1111/ele.12963

    Article  Google Scholar 

  11. Clark DA, Brown S, Kicklighter DW et al (2001) Net primary production in tropical forests: an evalution and synthesis of existing field data. Ecol Appl 11:371–384. https://doi.org/10.1890/1051-0761(2001)011[0371:NPPITF]2.0.CO;2

    Article  Google Scholar 

  12. Cleveland CC, Reed SC, Townsend AR (2006) Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503. https://doi.org/10.1890/05-0525

    Article  Google Scholar 

  13. Cleveland CC, Townsend AR, Taylor P et al (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol Lett 14:939–947. https://doi.org/10.1111/j.1461-0248.2011.01658.x

    Article  Google Scholar 

  14. Condit R, Hubbell SP, Lafrankie JV et al (1996) Species-area and species-individual relationships for tropical trees: a comparison of three 50-ha plots. J Ecol 84:549–562

    Article  Google Scholar 

  15. Coq S, Souquet J, Meudec E et al (2010) Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91:2080–2091

    Article  Google Scholar 

  16. Corti G, Ugolini FC, Agnelli A et al (2002) The soil skeleton, a forgotten pool of carbon and nitrogen in soil. Eur J Soil Sci 53:283–298. https://doi.org/10.1046/j.1365-2389.2002.00442.x

    Article  Google Scholar 

  17. Davidson EA, Keller M, Erickson HE et al (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50:667. https://doi.org/10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2

    Article  Google Scholar 

  18. Dent DH, Bagchi R, Robinson D et al (2006) Nutrient fluxes via litterfall and leaf litter decomposition vary across a gradient of soil nutrient supply in a lowland tropical rain forest. Plant Soil 288:197–215. https://doi.org/10.1007/s11104-006-9108-1

    Article  Google Scholar 

  19. Fisher JB, Malhi Y, Torres IC et al (2013) Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172:889–902. https://doi.org/10.1007/s00442-012-2522-6

    Article  Google Scholar 

  20. Fyllas NM, Patiño S, Baker TR et al (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:2677–2708. https://doi.org/10.5194/bgd-6-3707-2009

    Article  Google Scholar 

  21. Haby V, Russelle M, Skoley E (1990) Testing soils for potassium, calcium, and magnesium. Soil testing and plant analysis. Third Edit. Soil Science Society of America, Madison, WI, pp 181–227

    Google Scholar 

  22. Hall SJ, McDowell WH, Silver WL (2013) When wet gets wetter: decoupling of moisture, redox biogeochemistry, and greenhouse gas fluxes in a humid tropical forest soil. Ecosystems 16:576–589. https://doi.org/10.1007/s10021-012-9631-2

    Article  Google Scholar 

  23. Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207. https://doi.org/10.1104/pp.43.8.1185

    Article  Google Scholar 

  24. Hart TB (1990) Monospecific dominance in tropical rain forests. Trends Ecol Evol 5:6–11

    Article  Google Scholar 

  25. Hättenschwiler S, Aeschlimann B, Coûteaux MM et al (2008) High variation in foliage and leaf litter chemistry among 45 tree species of a Neotropical rainforest community. New Phytol 179:165–175. https://doi.org/10.1111/j.1469-8137.2008.02438.x

    Article  Google Scholar 

  26. Hättenschwiler S, Coq S, Barantal S, Handa IT (2011) Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytol 189:950–965. https://doi.org/10.1111/j.1469-8137.2010.03483.x

    Article  Google Scholar 

  27. Hilton RG, Galy A, West AJ et al (2013) Geomorphic control on the δ15N of mountain forests. Biogeosciences 10:1693–1705. https://doi.org/10.5194/bg-10-1693-2013

    Article  Google Scholar 

  28. Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–363. https://doi.org/10.1016/j.tree.2015.03.015

    Article  Google Scholar 

  29. Houlton BZ, Sigman DM, Schuur EAG, Hedin LO (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc Natl Acad Sci 104:8902–8906. https://doi.org/10.1073/pnas.0609935104

    Article  Google Scholar 

  30. Janzen DH (1983) No park is an island: increase in interference from outside as park size decreases. Oikos 41:402–410. https://doi.org/10.2307/3544100

    Article  Google Scholar 

  31. Jenny H, Arkley RJ, Schultz AM (1969) The pygmy forest-podsol ecosystem and its dune associates of the Mendocino coast. Madrono 20:60–74

    Google Scholar 

  32. Kappelle M, Castro M, Acevedo H et al (2003) Ecosistemas del área de conservación Osa (ACOSA). Instituto Nacional de Biodiversidad, San Jose, Costa Rica

    Google Scholar 

  33. Kaspari M, Garcia MN, Harms KE et al (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43. https://doi.org/10.1111/j.1461-0248.2007.01124.x

    Article  Google Scholar 

  34. Keller AB, Reed SC, Townsend AR, Cleveland CC (2013) Effects of canopy tree species on belowground biogeochemistry in a lowland wet tropical forest. Soil Biol Biochem 58:61–69. https://doi.org/10.1016/j.soilbio.2012.10.041

    Article  Google Scholar 

  35. Laughlin DC, Richardson SJ, Wright EF, Bellingham PJ (2015) Environmental filtering and positive plant litter feedback simultaneously explain correlations between leaf traits and soil fertility. Ecosystems 18:1269–1280. https://doi.org/10.1007/s10021-015-9899-0

    Article  Google Scholar 

  36. Losos E, Leigh E (2004) Tropical forest diversity and dynamism: findings from a large-scale plot network. University of Chicago Press, Chicago

    Google Scholar 

  37. Lovett GM, Weathers KC, Arthur MA, Schultz JC (2004) Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67:289–308. https://doi.org/10.1023/B:BIOG.0000015786.65466.f5

    Article  Google Scholar 

  38. Martinelli LA, Piccolo MC, Townsend AR et al (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65. https://doi.org/10.1007/BF01007573

    Article  Google Scholar 

  39. Matson P, McDowell W, Townsend A, Vitousek P (1999) The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry 46:67

    Google Scholar 

  40. Nardoto GB, Ometto JPHB, Ehleringer JR et al (2008) Understanding the influences of spatial patterns on N availability within the Brazilian Amazon forest. Ecosystems 11:1234–1246. https://doi.org/10.1007/s10021-008-9189-1

    Article  Google Scholar 

  41. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331. https://doi.org/10.2307/1932179

    Article  Google Scholar 

  42. Osborne BB, Nasto MK, Asner GP et al (2017) Climate, topography, and canopy chemistry exert hierarchical control over soil N cycling in a Neotropical lowland forest. Ecosystems 20:1089–1103. https://doi.org/10.1007/s10021-016-0095-7

    Article  Google Scholar 

  43. Perez S, Alvarado A, Ramirez E (1978) Manual descriptivo del mapa de asociaciones de subgrupos de suelos de Costa Rica: (escala 1:200000). Oficina de Plantification Sectorial Agropecuario, San Jose, Costa Rica

    Google Scholar 

  44. Porder S, Asner GP, Vitousek PM (2005a) Ground-based and remotely sensed nutrient availability across a tropical landscape. Proc Natl Acad 102:10909–10912. https://doi.org/10.1073/pnas.0504929102

    Article  Google Scholar 

  45. Porder S, Paytan A, Vitousek PM (2005b) Erosion and landscape development affect plant nutrient status in the Hawaiian Islands. Oecologia 142:440–449. https://doi.org/10.1007/s00442-004-1743-8

    Article  Google Scholar 

  46. Posada JM, Schuur EAG (2011) Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia 165:783–795. https://doi.org/10.1007/s00442-010-1881-0

    Article  Google Scholar 

  47. Santiago LS (2007) Extending the leaf economics spectrum to decomposition: evidence from a tropical forest. Ecology 88:1126–1131. https://doi.org/10.1890/06-1841

    Article  Google Scholar 

  48. Scherer-Lorenzen AM, Bonilla JL, Potvin C et al (2007) Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos 116:2108–2124

    Article  Google Scholar 

  49. Schimann H, Ponton S, Hättenschwiler S et al (2008) Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from 15N natural abundance and microbial activities. Soil Biol Biochem 40:487–494. https://doi.org/10.1016/j.soilbio.2007.09.011

    Article  Google Scholar 

  50. Silver WL, Lugo AE, Keller M, (1999) Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44:301–328. https://doi.org/10.1023/A:1006034126698

    Article  Google Scholar 

  51. Silver WL, Neff J, McGroddy M et al (2000) Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3:193–209. https://doi.org/10.1007/s100210000019

    Article  Google Scholar 

  52. Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using Canoco 5, 2nd edn. Cambridge University Press, Czech Republic

    Book  Google Scholar 

  53. Soper FM, Taylor PG, Wieder WR et al (2017) Modest gaseous nitrogen losses point to conservative nitrogen cycling in a lowland tropical forest watershed. Ecosystems 12:901–912. https://doi.org/10.1007/s10021-017-0193-1

    Article  Google Scholar 

  54. Soper FM, Sullivan BW, Nasto MK et al (2018) Remotely-sensed canopy nitrogen correlates with nitrous oxide emissions in a lowland tropical rainforest. Ecology 99:2080–2089. https://doi.org/10.1002/ecy.2434

    Article  Google Scholar 

  55. Sprent JI (2009) Legume Nodulation: A global perspective. Wiley-Blackwell, Oxford, UK

    Book  Google Scholar 

  56. Sundarapandian SM, Swamy PS (1999) Litter production and leaf-litter decomposition of selected trees species in tropical forests at Kodayar in the Western Ghats, India. For Ecol Manage 123:231–244

    Article  Google Scholar 

  57. Szefer P, Carmona CP, Chmel K et al (2017) Determinants of litter decomposition rates in a tropical forest: functional traits, phylogeny and ecological succession. Oikos 126:1101–1111. https://doi.org/10.1111/oik.03670

    Article  Google Scholar 

  58. Taylor P, Asner G, Dahlin K et al (2015a) Landscape-scale controls on aboveground forest carbon stocks on the Osa Peninsula, Costa Rica. PLoS One 10:e0126748. https://doi.org/10.1371/journal.pone.0126748

    Article  Google Scholar 

  59. Taylor PG, Wieder WR, Weintraub S et al (2015b) Organic forms dominate hydrologic nitrogen export from a lowland tropical watershed. Ecology 96:1229–1241. https://doi.org/10.1890/13-1418.1.sm

    Article  Google Scholar 

  60. Ter Braak CJF, Šmilauer P (2002) CANOCO 4.5 reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (Version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  61. Tiessen H, Cuevas E, Chacon P (1994) The role of soil organic matter in sustaining soil fertility. Nature 371:783–785. https://doi.org/10.1038/371783a0

    Article  Google Scholar 

  62. Torti SD, Coley PD, Kursar TA (2001) Causes and consequences of monodominance in tropical lowland forests. Am Nat 157:141–153. https://doi.org/10.1086/318629

    Article  Google Scholar 

  63. Townsend AR, Cleveland CC, Asner GP, Bustamante MMC (2007) Controls over foliar N: P ratios in tropical rain forests. Ecology 88:107–118. https://doi.org/10.1890/0012-9658(2007)88[107:cofnri]2.0.co;2

    Article  Google Scholar 

  64. Van Haren JLM, De Oliveira RC, Restrepo-Coupe N et al (2010) Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest? J Geophys Res Biogeosci 115:1–9. https://doi.org/10.1029/2009JG001231

    Article  Google Scholar 

  65. Vasquez M (1989) Mapa de suelos de Costa Rica. Scale 1:200.000. Costa Rica, San Jose

    Google Scholar 

  66. Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298

    Article  Google Scholar 

  67. Vitousek PM (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton University Press, Princeton, New Jersey

    Book  Google Scholar 

  68. Vitousek PM, Hobbie SE (2000) Heterotrophic nitrogen fixation in decomposing litter: patterns and regulation. Ecology 81:2366–2376

    Article  Google Scholar 

  69. Vitousek PM, Gosz JR, Grier CC et al (1982) A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecol Monogr 52:155–177. https://doi.org/10.2307/1942609

    Article  Google Scholar 

  70. Wanek W, Drage S, Hinko N et al (2008) Primary production and nutrient cycling in lowland rainforests of the Golfo Dulce region. Nat Cult Hist Golf Dulce Reg Costa Rica 80:155–177

    Google Scholar 

  71. Waring ABG, Álvarez-Cansino L, Barry K et al (2015) Pervasive and strong effects of plant individuals and species on soil chemistry: a meta-analysis of individual plant “Zinke” effects. Proc R Soc B 282:1–8. https://doi.org/10.1098/rspb.2015.1001

    Article  Google Scholar 

  72. Weintraub SR, Taylor PG, Porder S et al (2015) Topographic controls on nitrogen availability in a lowland tropical forest. Ecology 96:1561–1574. https://doi.org/10.1890/14-0834.1

    Article  Google Scholar 

  73. White AF, Schulz MS, Stonestrom DA et al (2009) Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. Part II: Solute profiles, gradients and the comparisons of contemporary and long-term weathering rates. Geochim Cosmochim Acta 73:2769–2803. https://doi.org/10.1016/j.gca.2009.01.029

    Article  Google Scholar 

  74. Wieder WR, Cleveland CC, Townsend AR (2009) Controls over leaf litter decomposition in wet tropical forests. Ecology 90:3333–3341. https://doi.org/10.1890/08-2294.1

    Article  Google Scholar 

  75. Wieder WR, Cleveland CC, Taylor PG et al (2013) Experimental removal and addition of leaf litter inputs reduces nitrate production and loss in a lowland tropical forest. Biogeochemistry 113:629–642. https://doi.org/10.1007/s10533-012-9793-1

    Article  Google Scholar 

  76. Xia S-W, Chen J, Schaefer D, Detto M (2015) Scale-dependent soil macronutrient heterogeneity reveals effects of litterfall in a tropical rainforest. Plant Soil 391:51–61

    Article  Google Scholar 

  77. Zinke PJ (1962) The pattern of influence of individual forest trees on soil properties. Ecology 43:130–133. https://doi.org/10.2307/1932049

    Article  Google Scholar 

Download references

Acknowledgements

A collaborative National Science Foundation Grant (DEB-0918387) awarded to S.P., C.C., and A.T. supported this work. The collection and processing of Carnegie Airborne Observatory (CAO) data was funded privately by the Carnegie Institution for Science. The CAO has been made possible by grants and donations to G.P. Asner from the Avatar Alliance Foundation, Margaret A. Cargill Foundation, David and Lucile Packard Foundation, Gordon and Betty Moore Foundation, Grantham Foundation for the Protection of the Environment, W.M. Keck Foundation, John D. and Catherine T. MacArthur Foundation, Andrew E. Mellon Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr., and William R. Hearst III. From the CAO, we thank R. Martin, C. Anderson, D. Knapp, and N. Vaughn for assistance with data collection and processing. The authors also thank Osa Conservation and M. Porras of the Organization for Tropical Studies as well as the Ministeria de Ambiente y Energía for assistance with research permits and forest access. M. Lopez, B. Cannon, K. Cushman, R. Ho, B. Munyer, and A. Swanson assisted with field and laboratory work, and L. Carlson and M. Rejmanek provided guidance on data analyses.

Author information

Affiliations

Authors

Contributions

BBO, MKN, CCC, and SP conceived of the study. BBO, MKN, FMS, CSB, CCC, PGT, and SP designed the project and performed the research. The Carnegie Airborne Observatory team, lead by GPA, collected and analyzed all remote sensing data. BBO analyzed all other data. All authors interpreted results and contributed to the MS. Writing was led by BBO and SP.

Corresponding author

Correspondence to Brooke B. Osborne.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: John Harrison.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 Monthly leaf litter production in the high and low canopy N plots in Piro (± 1 standard error; n = 5 of each canopy type) between September 2015 and February 2017. The grey box highlights January through December 2016, the year during which soil and leaf litter samples were collected and analyzed for this study. (PDF 155 kb)

Online Resource 2 Mean leaf litter %C, %N, and C:N ratios in the high and low canopy N plots measured in Piro in February, April, and July 2016 (± 1 standard error). (PDF 80 kb)

Online Resource 3 Mean leaf litter leachate %C, %N, and C:N ratios in the high and low canopy N plots measured in Piro (± 1 standard error). Values come from composite samples collected quarterly (February, May, August, and November 2016), each representing roughly three months of litterfall. (PDF 91 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osborne, B.B., Nasto, M.K., Soper, F.M. et al. Leaf litter inputs reinforce islands of nitrogen fertility in a lowland tropical forest. Biogeochemistry 147, 293–306 (2020). https://doi.org/10.1007/s10533-020-00643-0

Download citation

Keywords

  • Canopy chemistry
  • Carnegie airborne observatory
  • Imaging spectroscopy
  • Plant functional traits
  • Soil