Influence of land use and hydrologic variability on seasonal dissolved organic carbon and nitrate export: insights from a multi-year regional analysis for the northeastern USA

Abstract

Land use/land cover (LULC) change has significant impacts on nutrient loading to aquatic systems and has been linked to deteriorating water quality globally. While many relationships between LULC and nutrient loading have been identified, characterization of the interaction between LULC, climate (specifically variable hydrologic forcing) and solute export across seasonal and interannual time scales is needed to understand the processes that determine nutrient loading and responses to change. Recent advances in high-frequency water quality sensors provide opportunities to assess these interannual relationships with sufficiently high temporal resolution to capture the unpredictable, short-term storm events that likely drive important export mechanisms for dissolved organic carbon (DOC) and nitrate (NO3–N). We deployed a network of in situ sensors in forested, agricultural, and urban watersheds across the northeastern United States. Using 2 years of high-frequency sensor data, we provide a regional assessment of how LULC and hydrologic variability affected the timing and magnitude of dissolved organic carbon and nitrate export, and the status of watershed fluxes as either supply or transport controlled. Analysis of annual export dynamics revealed systematic differences in the timing and magnitude of DOC and NO3–N delivery among different LULC classes, with distinct regional similarities in the timing of DOC and NO3–N fluxes from forested and urban watersheds. Conversely, export dynamics at agricultural sites appeared to be highly site-specific, likely driven by local agricultural practices and regulations. Furthermore, the magnitude of solute fluxes across watersheds responded strongly to interannual variability in rainfall, suggesting a high degree of hydrologic control over nutrient loading across the region. Thus, there is strong potential for climate-driven changes in regional hydrologic cycles to drive variation in the magnitude of downstream nutrient fluxes, particularly in watersheds where solute supply and/or transport has been modified.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Addy K, Gold AJ, Loffredo JA et al (2018) Stream response to an extreme drought-induced defoliation event. Biogeochemistry 140:199–215. https://doi.org/10.1007/s10533-018-0485-3

    Article  Google Scholar 

  2. Ågren A, Haei M, Köhler SJ et al (2010) Regulation of stream water dissolved organic carbon (DOC) concentrations during snowmelt; the role of discharge, winter climate and memory effects. Biogeosciences 7:2901–2913. https://doi.org/10.5194/bg-7-2901-2010

    Article  Google Scholar 

  3. Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. J Wildl Manage 66:912–918

    Article  Google Scholar 

  4. Andrews DM, Lin H, Zhu Q et al (2011) Hot spots and hot moments of dissolved organic carbon export and soil organic carbon storage in the shale hills catchment. Vadose Zo J 10:943. https://doi.org/10.2136/vzj2010.0149

    Article  Google Scholar 

  5. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309. https://doi.org/10.1038/nature04141

    Article  Google Scholar 

  6. Basu NB, Destouni G, Jawitz JW et al (2010) Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophys Res Lett 37:1–5. https://doi.org/10.1029/2010GL045168

    Article  Google Scholar 

  7. Basu NB, Thompson SE, Rao PSC (2011) Hydrologic and biogeochemical functioning of intensively managed catchments: a synthesis of top-down analyses. Water Resour Res 47:1–12. https://doi.org/10.1029/2011WR010800

    Article  Google Scholar 

  8. Bernal S, Von Schiller D, Sabater F, Marti E (2013) Hydrological extremes modulate nutrient dynamics in mediterranean climate streams across different spatial scales. Hydrobiologia 719:31–42

    Article  Google Scholar 

  9. Bernhardt ES, Band LE, Walsh CJ, Berke PE (2008) Understanding, managing, and minimizing urban impacts on surface water nitrogen loading. Ann N Y Acad Sci 1134:61–96. https://doi.org/10.1196/annals.1439.014

    Article  Google Scholar 

  10. Bernhardt ES, Blaszczak JR, Ficken CD, Fork ML, Kaiser KE, Seybold EC (2017) Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems. https://doi.org/10.1007/s10021-016-0103-y

    Article  Google Scholar 

  11. Boyer EW, Hornberger GM, Bencala KE, McKnight DM (2000) Effects of asynchronous snowmelt on flushing of dissolved organic carbon: a mixing model approach. Hydrol Process 14:17

    Google Scholar 

  12. Brooks PD, Williams MW, Schmidt SK (1998) Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry 43:1–15. https://doi.org/10.1023/A:1005947511910

    Article  Google Scholar 

  13. Brooks PD, Grogan P, Templer PH et al (2011) Carbon and nitrogen cycling in snow-covered environments. Geogr Compass 9:682–699

    Article  Google Scholar 

  14. Broussard W, Turner RE (2009) A century of changing land-use and water-quality relationships in the continental US. Front Ecol Environ 7:302–307. https://doi.org/10.1890/080085

    Article  Google Scholar 

  15. Casson NJ, Eimers MC, Watmough SA (2012) Impact of winter warming on the timing of nutrient export from forested catchments. Hydrol Process 26:2546–2554. https://doi.org/10.1002/hyp.8461

    Article  Google Scholar 

  16. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. https://doi.org/10.1038/nature04514

    Article  Google Scholar 

  17. Delaware State Climate Office (2019) Delaware Climate Information: Office of Delaware State Climatologist. http://climate.udel.edu/delawares-climate. Accessed 8 Mar 2019

  18. Dodds WK, López AJ, Bowden WB et al (2002) N uptake as a function of concentration in streams. J North Am Benthol Soc 21(2):206–220

    Article  Google Scholar 

  19. Dunne T, Black RD (1970) Partial area contributions to storm runoff in a small New England Watershed. Water Resour Res 6:1296–1311

    Article  Google Scholar 

  20. Eaton AD, Clesceri LS, Greenberg AE, Franson MH (1998) Standard methods for the examination of water and wastewater. APHA, AWWA, and WEF, Washington, DC

    Google Scholar 

  21. Etheridge JR, Birgand F, Osburn JA et al (2014) Using in situ ultraviolet-visual spectroscopy to measure nitrogen, carbon, phosphorus, and suspended solids concentrations at a high frequency in a brackish tidal marsh. Limnol Oceanogr Methods 12:10–22. https://doi.org/10.4319/lom.2014.12.10

    Article  Google Scholar 

  22. Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574. https://doi.org/10.1126/science.1111772

    Article  Google Scholar 

  23. Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present, future. Biogeochemistry 70:153–226. https://doi.org/10.1007/s10533-004-0370-0

    Article  Google Scholar 

  24. Galloway JD, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle. Science 320:889–892. https://doi.org/10.1126/science.1136674

    Article  Google Scholar 

  25. Gao P, Josefson M (2012) Event-based suspended sediment dynamics in a central New York watershed. Geomorphology 139–140:425–437. https://doi.org/10.1016/j.geomorph.2011.11.007

    Article  Google Scholar 

  26. Godsey SE, Kirchner J, Clow D (2009) Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrol Process 23:1844–1865. https://doi.org/10.1002/hyp.7315

    Article  Google Scholar 

  27. Groffman PM, Rustad LE, Templer PH et al (2012) Long-term integrated studies show complex and surprising effects of climate change in the northern hardwood forest. Bioscience 62:1056–1066. https://doi.org/10.1525/bio.2012.62.12.7

    Article  Google Scholar 

  28. Groffman PM, Cavender-Bares J, Bettez ND et al (2014) Ecological homogenization of urban USA. Front Ecol Environ 12:74–81. https://doi.org/10.1890/120374

    Article  Google Scholar 

  29. Hayhoe K, Wake CP, Huntington TG et al (2007) Past and future changes in climate and hydrological indicators in the US Northeast. Clim Dyn 28:381–407. https://doi.org/10.1007/s00382-006-0187-8

    Article  Google Scholar 

  30. Horton R, Yohe G, Easterling W, Kates R, Ruth M, Sussman E, Whelchel A, Wolfe D, Lipschultz F (2014) Ch. 16: Northeast. Climate change impacts in the United States: The third national climate assessment. In: Melillo JM, Richmond TC, Yohe GW (eds) National climate assessment report. US Global Change Research Program, Washington, DC

    Google Scholar 

  31. Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8:14–20. https://doi.org/10.1016/j.hal.2008.08.015

    Article  Google Scholar 

  32. Isles PDF, Xu Y, Stockwell JD, Schroth AW (2017) Climate-driven changes in energy and mass inputs systematically alter nutrient concentration and stoichiometry in deep and shallow regions of Lake Champlain. Biogeochemistry. https://doi.org/10.1007/s10533-017-0327-8

    Article  Google Scholar 

  33. Jawitz J, Mitchell J (2011) Temporal inequality in catchment discharge and solute export. Water Resources Res 47:14. https://doi.org/10.1029/2010wr010197

    Article  Google Scholar 

  34. Jencso KG, McGlynn BL, Gooseff MN et al (2009) Hydrologic connectivity between landscapes and streams: Transferring reach- and plot-scale understanding to the catchment scale. Water Resour Res. https://doi.org/10.1029/2008wr007225

    Article  Google Scholar 

  35. Johnson ER, Inamdar S, Kan J, Vargas R (2018) Particulate organic matter composition in stream runoff following large storms: role of POM sources, particle size, and event characteristics. J Geophys Res Lett 123:660–675. https://doi.org/10.1002/2017JG004249

    Article  Google Scholar 

  36. Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723

    Article  Google Scholar 

  37. Kaushal SS, Groffman PM, Band LE et al (2011) Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environ Sci Technol 45:8225–8232. https://doi.org/10.1021/es200779e

    Article  Google Scholar 

  38. Kaushal SS, Gold AJ, Mayer PM (2017) Land use, climate, and water resources-global stages of interaction. Water (Switzerland) 9:815. https://doi.org/10.3390/w9100815

    Article  Google Scholar 

  39. Kaye JP, Groffman PM, Grimm NB et al (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21:192–199. https://doi.org/10.1016/j.tree.2005.12.006

    Article  Google Scholar 

  40. Kilpatrick FA, Cobb ED (1985) Meaurement of discharge using tracers. In: Techniques of water-resources investigations of the United States Geological Survey

  41. Laudon H, Kohler S, Buffam I (2004) Seasonal TOC export from seven boreal catchments in northern Sweden. Aquat Sci 66:223–230. https://doi.org/10.1007/s00027-004-0700-2

    Article  Google Scholar 

  42. Loecke TD, Burgin AJ, Riveros-Iregui DA et al (2017) Weather whiplash in agricultural regions drives deterioration of water quality. Biogeochemistry 133:7–15. https://doi.org/10.1007/s10533-017-0315-z

    Article  Google Scholar 

  43. MacDonald GK, Bennett EM, Taranu ZE (2012) The influence of time, soil characteristics, and land-use history on soil phosphorus legacies: a global meta-analysis. Glob Change Biol 18:1904–1917. https://doi.org/10.1111/j.1365-2486.2012.02653.x

    Article  Google Scholar 

  44. McLauchlan K (2006) The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems 9:1364–1382. https://doi.org/10.1007/s10021-005-0135-1

    Article  Google Scholar 

  45. Mevik B, Wehrens R, Liland KH (2016) pls: least squares and principal component regression, R package version 2.6-0. https://CRAN.R-project.org/package=pls

  46. Mitchell JFB, Lowe J, Wood RA, Vellinga M (2006) Extreme events due to human-induced climate change. Philos Trans R Soc A Math Phys Eng Sci 364:2117–2133. https://doi.org/10.1098/rsta.2006.1816

    Article  Google Scholar 

  47. Motesharrei S, Rivas J, Kalnay E et al (2016) Modeling sustainability: population, inequality, consumption, and bidirectional coupling of the Earth and Human Systems. Natl Sci Rev 3(4):470–494. https://doi.org/10.1093/nsr/nww081

    Article  Google Scholar 

  48. NOAA (2019) Climate of Vermont. NOAA National Centers for environmental information. https://www.ncdc.noaa.gov/climatenormals/clim60/states/Clim_VT_01.pdf

  49. O’Brien JM, Dodds WK, Wilson KC, Murdock JN, Eichmiller J (2007) The saturation of N cycling in central plains stream: 15 N experiments across a broad gradient of nitrate concentrations. Biogeochemistry 84:31–49. https://doi.org/10.1007/s10533-007-9073-7

    Article  Google Scholar 

  50. Paul MJ, Meyer JL (2001) Streams in the Urban Landscape. Annu Rev Ecol Syst 32:333–365. https://doi.org/10.1016/j.landurbplan.2004.09.043

    Article  Google Scholar 

  51. Pellerin BA, Saraceno JF, Shanley JB et al (2011) Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream. Biogeochemistry 108:183–198. https://doi.org/10.1007/s10533-011-9589-8

    Article  Google Scholar 

  52. Perdrial JN, McIntosh J, Harpold A et al (2014) Stream water carbon controls in seasonally snow-covered mountain catchments: impact of inter-annual variability of water fluxes, catchment aspect and seasonal processes. Biogeochemistry 118:273–290. https://doi.org/10.1007/s10533-013-9929-y

    Article  Google Scholar 

  53. Ramos TB, Gonçalves MC, Branco MA et al (2015) Catena Sediment and nutrient dynamics during storm events in the Enxoé temporary river, southern Portugal. CATENA 127:177–190. https://doi.org/10.1016/j.catena.2015.01.001

    Article  Google Scholar 

  54. Raymond PA, Saiers JE, Sobczak WV (2016) Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97:5–16. https://doi.org/10.1890/07-1861.1

    Article  Google Scholar 

  55. Rhode Island State Climatology Office (2019) Overview of Climate in Rhode Island. http://www.dem.ri.gov/climate/climate-overview-ri.php. Accessed 8 Mar 2019

  56. Rowland R, Inamdar S, Parr T (2017) Evolution of particulate organic matter (POM) alon g aheadwater drainage: role of sources, particle size class, and storm magnitude. Biogeochemistry 133:181–200. https://doi.org/10.1007/s10533-017-0325-x

    Article  Google Scholar 

  57. Sala OE, Chapin FS III, Armesto Juan J et al (2000) Global Biodiversity Scenarios for the Year 2100. Science 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770

    Article  Google Scholar 

  58. Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res. https://doi.org/10.1029/2006WR005486

    Article  Google Scholar 

  59. Sebestyen SD, Boyer EW, Shanley JB (2009) Responses of stream nitrate and DOC loadings to hydrological forcing and climate change in an upland forest of the northeastern United States. J Geophys Res Biogeosci 114:1–11. https://doi.org/10.1029/2008JG000778

    Article  Google Scholar 

  60. Siegert CM, Levia DF, Leathers DJ et al (2017) Do storm synoptic patterns affect biogeochemical fluxes from temperate deciduous forest canopies? Biogeochemistry 132:273–292. https://doi.org/10.1007/s10533-017-0300-6

    Article  Google Scholar 

  61. Thompson SE, Basu NB, Lascurain J Jr, Aubeneau AA, Rao PSC (2011) Relative dominance of hydrologic versus biogeochemical factors on solute export across impact gradients. Water Resour Res 47:1–20. https://doi.org/10.1029/2010WR009605

    Article  Google Scholar 

  62. Turnipseed DP, Sauer VB (2010) Discharge measurements at gaging stations. In: U.S. Geological Survey Techniques and Methods book 3, chap. A8. p 87

  63. Van Meter KJ, Basu NB, Veenstra JJ, Burras CL (2016) The Nitrogen legacy: evidence of soil nitrogen accumulation in anthropogenic landscapes. Environ Res Lett. https://doi.org/10.1088/1748-9326/11/3/035014

    Article  Google Scholar 

  64. Van Meter KJ, Van Cappellen P, Basu NB (2018) Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science 360:427–430. https://doi.org/10.1126/science.aar4462

    Article  Google Scholar 

  65. Vaughan MCH, Bowden WB, Shanley JB et al (2017) High-frequency dissolved organic carbon and nitrate measurements reveal differences in storm hysteresis and loading in relation to land cover and seasonality. Water Resour Res. https://doi.org/10.1002/2017WR020491

    Article  Google Scholar 

  66. Venter O, Sanderson EW, Magrach A, Allan JR, Beher J, Jones KR, Possingham HP, Laurance WF, Wood P, Fekete BM, Levy MA, Watson JEM (2016) Sixteen years of change in the globa terrestrial human footpring and implications for biodiversity conservation. Nat Commun 7:1–11. https://doi.org/10.1038/ncomms12558

    Article  Google Scholar 

  67. Vermont State Climate Office (2019). Vermont Climate. http://www.uvm.edu/~vtstclim/?Page=vt_climate.html. Accessed 8 Mar 2019

  68. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499. https://doi.org/10.1126/science.277.5325.494

    Article  Google Scholar 

  69. Walsh CJ, Roy AH, Feminella JW et al (2005) The urban stream syndrome: current knowledge and the search for a cure. J North Am Benthol Soc 24:706–723

    Article  Google Scholar 

  70. Walsh J, Wuebbles D, Hayhoe K et al (2014) Ch. 2: Our changing climate. Climate change impacts in the United States: the third national climate assessment. In: Melillo JM, Richmond TC, Yohe GW (eds) National climate assessment report. U.S. Global Change Research Program, Washington, DC, pp 19–67

    Google Scholar 

  71. Walter MT, Walter MF, Brooks ES et al (2000) Hydrologically sensitive areas: variable source area hydrology implications for water quality risk assessment. J Soil Water Conserv 3:277–284

    Google Scholar 

  72. Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  Google Scholar 

  73. Wilson HF, Xenopoulos MA (2009) Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat Geosci 2:37–41. https://doi.org/10.1038/ngeo391

    Article  Google Scholar 

  74. Winder M, Schindler DE (2004) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85:2100–2106. https://doi.org/10.1890/04-0151

    Article  Google Scholar 

  75. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ Sci Pollut Res 10:126–139. https://doi.org/10.1065/esor2002.12.142

    Article  Google Scholar 

  76. Zak DR, Groffman PM, Pregitzer KS et al (1990) The Vernal Dam: plant-Microbe Competition for Nitrogen in Northern Hardwood Forests. Ecology 71:651–656

    Article  Google Scholar 

  77. Zarnetske JP, Bouda M, Abbott BW, Saiers J, Raymond PA (2018) Generality of hydrologic transport limitation of watershed organic carbon flux across ecoregions of the United States. Geophys Res Lett 45:11702–11711. https://doi.org/10.1029/2018GL080005

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation under VT EPSCoR grants OIA 1556770 and EPS-IIA1330446. We thank Ryan Sleeper and Saul Blocher for their assistance in installing and maintaining the VT sensor network. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erin Seybold.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Klaus-Holger Knorr.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seybold, E., Gold, A.J., Inamdar, S.P. et al. Influence of land use and hydrologic variability on seasonal dissolved organic carbon and nitrate export: insights from a multi-year regional analysis for the northeastern USA. Biogeochemistry 146, 31–49 (2019). https://doi.org/10.1007/s10533-019-00609-x

Download citation

Keywords

  • Land use
  • Hydrologic variability
  • Dissolved organic carbon export
  • Nitrate export
  • Supply and transport control