Skip to main content

Advertisement

Log in

Source of organic detritus and bivalve biomass influences nitrogen cycling and extracellular enzyme activity in estuary sediments

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

In aquatic ecosystems, natural processes that remove nitrogen from the biologically available pool (e.g. denitrification) have been intensively studied as an ecosystem function that reduces eutrophication. The quantity of sediment organic matter is a key driver of denitrification with percent organic content positively related to rates of nitrogen removal; however, few studies have investigated the influence of the quality of organic matter on nitrogen cycling in estuarine sediments despite shifts in primary producers with eutrophication. This laboratory study using intact benthic communities investigates the influence of various organic detritus sources, which vary in their C:N ratio, on nitrogen gas (N2) and solute fluxes and extracellular enzyme activity in estuarine sediments. A custom-built tank with a removable front plate was used with a planar optode film to image sediment oxygenation. Mangrove leaf detritus significantly increased the net N2 production in sediments, while the deposition of other detrital sources and control sediments produced net N2 consumption. Sulfatase activity was significantly reduced in the mangrove leaves and seagrass treatments, suggesting alteration of heterotrophic microbial activity with reducing oxygen conditions. Leucine aminopeptidase activity, indicating nitrogen cycling, was reduced in all treatments, suggesting the organic detritus provided a nitrogen supplement or reduced the activity of extracellular enzymes producing microbes. Bivalve biomass increased net nitrogen gas fluxes in some treatments. Our results indicate different detrital sources may have varying impacts on the removal of bioavailable nitrogen through denitrification and show that feedbacks in biogeochemical cycles may occur with changes in organic detrital source pools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An S, Gardner WS, Kana T (2001) Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis. Appl Environ Microbiol 67:1171–1178

    Article  Google Scholar 

  • Babbin AR, Keil RG, Devol AH, Ward BB (2014) Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. Science 344:406–408

    Article  Google Scholar 

  • Babbin AR, Jayakumar A, Ward BB (2016) Organic matter loading modifies the microbial community responsible for nitrogen loss in estuarine sediments. Microb Ecol 71:555–565

    Article  Google Scholar 

  • Baltar F, Morán XAG, Lønborg C (2017) Warming and organic matter sources impact the proportion of dissolved to total activities in marine extracellular enzymatic rates. Biogeochemistry 133:307–316. https://doi.org/10.1007/s10533-017-0334-9

    Article  Google Scholar 

  • Barnes J, Upstill-Goddard RC (2011) N2O seasonal distributions and air-sea exchange in UK estuaries: implications for the tropospheric N2O source from European coastal waters. J Geophys Res 116:G01006. https://doi.org/10.1029/2009JG001156

    Article  Google Scholar 

  • Batchelor B, Lawrence AW (1978) Autotrophic denitrification using elemental sulfur. Journal (Water Pollution Control Federation) 50:1986–2001

    Google Scholar 

  • Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD (2013) High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J Vis Exp e50961:1–16. https://doi.org/10.3791/50961

    Article  Google Scholar 

  • Belley R, Snelgrove PVR, Archambault P, Juniper SK (2016) Environmental drivers of benthic flux variation and ecosystem functioning in Salish Sea and northeast Pacific sediments. PLoS ONE 11:e0151110

    Article  Google Scholar 

  • Boynton WR, Kemp WM (1985) Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient. Mar Ecol Prog Ser 23:45–55

    Article  Google Scholar 

  • Brito A, Newton A, Tett P, Fernandes TF (2009) Development of an optimal methodology for the extraction of microphytobenthic chlorophyll. J Int Environ Appl Sci 4:42–54

    Google Scholar 

  • Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5:89–96

    Article  Google Scholar 

  • Burkhardt BG, Watkins-Brandt KS, Defforey D, Paytan A, White AE (2014) Remineralization of phytoplankton-derived organic matter by natural populations of heterotrophic bacteria. Mar Chem 163:1–9. https://doi.org/10.1016/j.marchem.2014.03.007

    Article  Google Scholar 

  • Bushaw KL et al (1996) Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature 381:404. https://doi.org/10.1038/381404a0

    Article  Google Scholar 

  • Caffrey JM, Sloth NP, Kaspar HF, Blackburn TH (1993) Effect of organic loading on nitrification and denitrification in a marine sediment microcosm. FEMS Microbiol Ecol 12:159–167

    Article  Google Scholar 

  • Caffrey JM, Hollibaugh JT, Mortazavi B (2016) Living oysters and their shells as sites of nitrification and denitrification. Mar Pollut Bull 112:86–90. https://doi.org/10.1016/j.marpolbul.2016.08.038

    Article  Google Scholar 

  • Cebron A, Berthe T, Garnier J (2003) Nitrification and nitrifying bacteria in the lower Seine River and Estuary (France). Appl Environ Microbiol 69:7091–7100

    Article  Google Scholar 

  • Chang BX et al (2014) The effect of organic carbon on fixed nitrogen loss in the eastern tropical South Pacific and Arabian Sea oxygen deficient zones. Limnol Oceanogr 59:1267–1274

    Article  Google Scholar 

  • Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253

    Article  Google Scholar 

  • Corbett DR (2010) Resuspension and estuarine nutrient cycling: insights from the Neuse River Estuary. Biogeosciences 7:3289–3300

    Article  Google Scholar 

  • Crawshaw JA, Schallenberg M, Savage C (2018) Physical and biological drivers of sediment oxygenation and denitrification in a New Zealand intermittently closed and open lake lagoon. NZ J Mar Freshw Res 53(1):33–59. https://doi.org/10.1080/00288330.2018.1476388

    Article  Google Scholar 

  • Damashek J, Francis CA (2018) Microbial nitrogen cycling in estuaries: from genes to ecosystem processes. Estuaries Coasts 41:626–660. https://doi.org/10.1007/s12237-017-0306-2

    Article  Google Scholar 

  • Devol AH (2015) Denitrification, anammox, and N2 production in marine sediments. Annu Rev Mar Sci 7:403–423

    Article  Google Scholar 

  • Diaz F, Raimbault P, Boudjellal B, Garcia N, Moutin T (2001) Early spring phosphorus limitation of primary productivity in a NW Mediterranean coastal zone (Gulf of Lions). Mar Ecol Prog Ser 211:51–62

    Article  Google Scholar 

  • Douglas EJ, Pilditch CA, Kraan C, Schipper LA, Lohrer AM, Thrush SF (2017) Macrofaunal functional diversity provides resilience to nutrient enrichment in coastal sediments. Ecosystems 20:1324–1336

    Article  Google Scholar 

  • Duarte B, Reboreda R, Caçador I (2008) Seasonal variation of extracellular enzymatic activity (EEA) and its influence on metal speciation in a polluted salt marsh. Chemosphere 73:1056–1063. https://doi.org/10.1016/j.chemosphere.2008.07.072

    Article  Google Scholar 

  • Dunn C, Jones TG, Girard A, Freeman C (2014) Methodologies for extracellular enzyme assays from wetland soils. Wetlands 34:9–17. https://doi.org/10.1007/s13157-013-0475-0

    Article  Google Scholar 

  • Erler DV, Welsh DT, Bennet WW, Meziane T, Hubas C, Nizzoli D, Ferguson AJP (2017) The impact of suspended oyster farming on nitrogen cycling and nitrous oxide production in a sub-tropical Australian estuary. Estuar Coast Shelf Sci 192:117–127. https://doi.org/10.1016/j.ecss.2017.05.007

    Article  Google Scholar 

  • Eyre B, Rysgaard S, Dalsgaard T, Christensen P (2002) Comparison of isotope pairing and N2: Ar methods for measuring sediment denitrification—assumptions, modifications, and implications. Estuaries 25:1077–1087. https://doi.org/10.1007/BF02692205

    Article  Google Scholar 

  • Eyre BD, Ferguson AJP, Webb A, Maher D, Oakes JM (2011) Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia). Biogeochemistry 102:111–133. https://doi.org/10.1007/s10533-010-9425-6

    Article  Google Scholar 

  • Eyre BD, Maher DT, Squire P (2013) Quantity and quality of organic matter (detritus) drives N2 effluxes (net denitrification) across seasons, benthic habitats, and estuaries. Global Biogeochem Cycles 27:1083–1095. https://doi.org/10.1002/2013GB004631

    Article  Google Scholar 

  • Fernandes SO, Michotey VD, Guasco S, Bonin PC, Loka Bharathi PA (2012) Denitrification prevails over anammox in tropical mangrove sediments (Goa, India). Mar Environ Res 74:9–19. https://doi.org/10.1016/j.marenvres.2011.11.008

    Article  Google Scholar 

  • Fernandes SO, Dutta P, Gonsalves M-J, Bonin PC, Loka Bharathi PA (2016) Denitrification activity in mangrove sediments varies with associated vegetation. Ecol Eng 95:671–681. https://doi.org/10.1016/j.ecoleng.2016.06.102

    Article  Google Scholar 

  • Fulweiler RW, Nixon SW, Buckley BA, Granger SL (2007) Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature 448:180–182. http://www.nature.com/nature/journal/v448/n7150/suppinfo/nature05963_S1.html

  • Fulweiler RW, Nixon SW, Buckley BA, Granger SL (2008) Net sediment N2 fluxes in a coastal marine system—experimental manipulations and a conceptual model. Ecosystems 11:1168–1180. https://doi.org/10.1007/s10021-008-9187-3

    Article  Google Scholar 

  • Fulweiler RW, Brown SM, Nixon SW, Jenkins BD (2013) Evidence and a conceptual model for the co-occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments. Mar Ecol Prog Ser 482:57–68

    Article  Google Scholar 

  • Galloway JN et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. https://doi.org/10.1007/s10533-004-0370-0

    Article  Google Scholar 

  • Gardner WS, McCarthy MJ, An S, Sobolev D, Sell KS, Brock D (2006) Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries. Limnol Oceanogr 51:558–568. https://doi.org/10.4319/lo.2006.51.1_part_2.0558

    Article  Google Scholar 

  • Ghosh S, Leff LG (2013) Impacts of labile organic carbon concentration on organic and inorganic nitrogen utilization by a stream biofilm bacterial community. Appl Environ Microbiol 79:7130–7141

    Article  Google Scholar 

  • Giblin AE, Tobias CR, Song B, Weston N, Banta GT, Rivera-Monroy VH (2013) The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography 26:124–131

    Article  Google Scholar 

  • Gladstone-Gallagher RV, Lundquist CJ, Pilditch CA (2014) Mangrove (Avicennia marina subsp. australasica) litter production and decomposition in a temperate estuary. NZ J Mar Freshw Res 48:24–37. https://doi.org/10.1080/00288330.2013.827124

    Article  Google Scholar 

  • Gongol C, Savage C (2016) Spatial variation in rates of benthic denitrification and environmental controls in four New Zealand estuaries. Mar Ecol Prog Ser 556:59–77

    Article  Google Scholar 

  • Hannides AK, Glazer BT, Sansone FJ (2014) Extraction and quantification of microphytobenthic Chl a within calcareous reef sands. Limnol Oceanogr 12:126–138

    Article  Google Scholar 

  • Hardison AK, Canuel EA, Anderson IC, Tobias CR, Veuger B, Waters MN (2013) Microphytobenthos and benthic macroalgae determine sediment organic matter composition in shallow photic sediments. Biogeosciences 10:5571–5588. https://doi.org/10.5194/bg-10-5571-2013

    Article  Google Scholar 

  • Hardison AK, Algar CK, Giblin AE, Rich JJ (2015) Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production. Geochim Cosmochim Acta 164:146–160. https://doi.org/10.1016/j.gca.2015.04.049

    Article  Google Scholar 

  • Hashimoto S, Furukawa K, Shioyama M (1987) Autotrophic denitrification using elemental sulfur. J Ferment Technol 65:683–692. https://doi.org/10.1016/0385-6380(87)90011-2

    Article  Google Scholar 

  • Hendrickson J, Trahan N, Gordon E, Ouyang Y (2007) Estimating relevance of organic carbon, nitrogen, and phosphorus loads to a blackwater river estuary. JAWRA J Am Water Resour Assoc 43:264–279. https://doi.org/10.1111/j.1752-1688.2007.00021.x

    Article  Google Scholar 

  • Her J-J, Huang J-S (1995) Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Biores Technol 54:45–51. https://doi.org/10.1016/0960-8524(95)00113-1

    Article  Google Scholar 

  • Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–590

    Article  Google Scholar 

  • Hill AR, Cardaci M (2004) Denitrification and organic carbon availability in riparian wetland soils and subsurface sediments. Soil Sci Soc Am J 68:320–325

    Article  Google Scholar 

  • Hill BH, Elonen CM, Anderson LE, Lehrter JC (2014) Microbial respiration and ecoenzyme activity in sediments from the Gulf of Mexico hypoxic zone. Aquat Microb Ecol 72:105–116

    Article  Google Scholar 

  • Hiroki M, Nohara S, Hanabishi K, Utagawa H, Yabe T, Satake K (2007) Enzymatic evaluation of decomposition in mosaic landscapes of a tidal flat ecosystem. Wetlands 27:399–405

    Article  Google Scholar 

  • Hoppe HG (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308

    Article  Google Scholar 

  • Houlbrooke DJ, Horne DJ, Hedley MJ, Hanly JA, Snow VO (2004) A review of literature on the land treatment of farm-dairy effluent in New Zealand and its impact on water quality. N Z J Agric Res 47:499–511

    Article  Google Scholar 

  • Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Annu Rev Ecol Syst 19:89–110

    Article  Google Scholar 

  • Huettel M, Rusch A (2000) Transport and degradation of phytoplankton in permeable sediment. Limnol Oceanogr 45:534–549. https://doi.org/10.4319/lo.2000.45.3.0534

    Article  Google Scholar 

  • Jackson CR, Tyler HL, Millar JJ (2013) Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays. J Vis Exp. https://doi.org/10.3791/50399

    Article  Google Scholar 

  • Janssen F, Huettel M, Witte U (2005) Pore-water advection and solute fluxes in permeable marine sediments (II): benthic respiration at three sandy sites with different permeabilities (German Bight, North Sea). Limnol Oceanogr 50:779–792

    Article  Google Scholar 

  • Jäntti H, Leskinen E, Stange CF, Hietanen S (2012) Measuring nitrification in sediments—comparison of two techniques and three 15NO measurement methods. Isot Environ Health Stud 48:313–326. https://doi.org/10.1080/10256016.2012.641543

    Article  Google Scholar 

  • Jones HFE, Pilditch CA, Hamilton DP, Bryan KR (2017) Impacts of a bivalve mass mortality event on an estuarine food web and bivalve grazing pressure. NZ J Mar Freshw Res 51:370–392. https://doi.org/10.1080/00288330.2016.1245200

    Article  Google Scholar 

  • Kana TM, Darkangelo C, Hunt MD, Oldham JB, Bennett GE, Cornwell JC (1994) Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal Chem 66:4166–4170. https://doi.org/10.1021/ac00095a009

    Article  Google Scholar 

  • Keller AA, Riebesell U (1989) Phytoplankton carbon dynamics during a winter-spring diatom bloom in an enclosed marine ecosystem: primary production, biomass and loss rates. Mar Biol 103:131–142. https://doi.org/10.1007/BF00391071

    Article  Google Scholar 

  • Kelly S (2009) Whangateau catchment and harbour study: Review of marine environment information. Prepared for Auckland Regional Council. Auckland Regional Council Technical Report 2009/003. Auckland, New Zealand

  • Kessler AJ, Cardenas MB, Santos IR, Cook PLM (2014) Enhancement of denitrification in permeable carbonate sediment due to intra-granular porosity: a multi-scale modelling analysis. Geochim Cosmochim Acta 141:440–453. https://doi.org/10.1016/j.gca.2014.06.028

    Article  Google Scholar 

  • Knapp AN (2012) The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol 3:374. https://doi.org/10.3389/fmicb.2012.00374

    Article  Google Scholar 

  • Le Guitton M, Soetaert K, Damsté JSS, Middelburg JJ (2015) Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: a multiproxy approach. Estuar Coast Shelf Sci 165:117–127. https://doi.org/10.1016/j.ecss.2015.09.010

    Article  Google Scholar 

  • Leynaert A, Longphuirt SN, Claquin P, Chauvaud L, Ragueneau O (2009) No limit? The multiphasic uptake of silicic acid by benthic diatoms. Limnol Oceanogr 54:571–576. https://doi.org/10.4319/lo.2009.54.2.0571

    Article  Google Scholar 

  • Livingstone MW, Smith RV, Laughlin RJ (2000) A spatial study of denitrification potential of sediments in Belfast and Strangford Loughs and its significance. Sci Total Environ 251–252:369–380. https://doi.org/10.1016/S0048-9697(00)00417-4

    Article  Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  Google Scholar 

  • Marks BM, Chambers L, White JR (2016) Effect of fluctuating salinity on potential denitrification in coastal wetland soil and sediments. Soil Sci Soc Am J 80:516–526. https://doi.org/10.2136/sssaj2015.07.0265

    Article  Google Scholar 

  • McDowell RW, Wilcock RJ (2008) Water quality and the effects of different pastoral animals. N Z Vet J 56:289–296. https://doi.org/10.1080/00480169.2008.36849

    Article  Google Scholar 

  • Middelboel M, Borch NH, Kirchman DL (1995) Bacterial utilization of dissolved free amino acids, dissolved combined amino acids and ammonium in the Delaware Bay estuary: effects of carbon and nitrogen limitation. Mar Ecol Prog Ser 128:109–120

    Article  Google Scholar 

  • Miskell B (2009) Whangateau catchment and harbour study: Review of environmental and socio-economic information. Prepared by Boffa Miskell Limited for Auckland Regional Council. Auckland Regional Council Technical Report 2009/004. Auckland, New Zealand

  • Murphy AE, Anderson IC, Smyth AR, Song B, Luckenbach MW (2016) Microbial nitrogen processing in hard clam (Mercenaria mercenaria) aquaculture sediments: the relative importance of denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Limnol Oceanogr 61:1589–1604. https://doi.org/10.1002/lno.10305

    Article  Google Scholar 

  • Newcomer TA, Kaushal SS, Mayer PM, Shields AR, Canuel EA, Groffman PM, Gold AJ (2012) Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams. Ecol Monogr 82:449–466

    Article  Google Scholar 

  • Newell SE, McCarthy MJ, Gardner WS, Fulweiler RW (2016a) Sediment nitrogen fixation: a call for re-evaluating coastal N budgets. Estuar Coasts 39:1626–1638. https://doi.org/10.1007/s12237-016-0116-y

    Article  Google Scholar 

  • Newell SE, Pritchard KR, Foster SQ, Fulweiler RW (2016b) Molecular evidence for sediment nitrogen fixation in a temperate New England estuary. PeerJ. https://doi.org/10.7717/peerj.1615

    Article  Google Scholar 

  • Nordhaus I, Salewski T, Jennerjahn TC (2011) Food preferences of mangrove crabs related to leaf nitrogen compounds in the Segara Anakan Lagoon, Java, Indonesia. J Sea Res 65:414–426. https://doi.org/10.1016/j.seares.2011.03.006

    Article  Google Scholar 

  • Nordhaus I, Salewski T, Jennerjahn TC (2017) Interspecific variations in mangrove leaf litter decomposition are related to labile nitrogenous compounds. Estuar Coast Shelf Sci 192:137–148. https://doi.org/10.1016/j.ecss.2017.04.029

    Article  Google Scholar 

  • O’Meara T, Thompson SP, Piehler MF (2015) Effects of shoreline hardening on nitrogen processing in estuarine marshes of the U.S. mid-Atlantic coast. Wetl Ecol Manag 23:385–394. https://doi.org/10.1007/s11273-014-9388-9

    Article  Google Scholar 

  • Park S (2011) Sea lettuce and nutrient monitoring in Tauranga Harbour 1991-2010. Bay of Plenty Regional Council Environmental Publication 2011/06. Whakatane, New Zealand

  • Parsons TR, Maita Y, Lalli CM (1984) Fluorometric determination of phaeo-pigments. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Amsterdam, pp 109–110

    Chapter  Google Scholar 

  • Piña-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81:111–130. https://doi.org/10.1007/s10533-006-9033-7

    Article  Google Scholar 

  • Precht E, Huettel M (2004) Rapid wave-driven advective pore water exchange in a permeable coastal sediment. J Sea Res 51:93–107

    Article  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rao AMF, Charette MA (2011) Benthic nitrogen fixation in an eutrophic estuary affected by groundwater discharge. J Coast Res. https://doi.org/10.2112/JCOASTRES-D-11-00057.1

    Article  Google Scholar 

  • Riekenberg PM, Oakes JM, Eyre BD (2017) Uptake of dissolved organic and inorganic nitrogen in microalgae-dominated sediment: comparing dark and light in situ and ex situ additions of 15N. Mar Ecol Prog Ser 571:29–42

    Article  Google Scholar 

  • R Studio Team (2015) RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/

  • Schallenberg M, Burns CW (1997) Phytoplankton biomass and productivity in two oligotrophic lakes of short hydraulic residence time. NZ J Mar Freshw Res 31:119–134. https://doi.org/10.1080/00288330.1997.9516749

    Article  Google Scholar 

  • Schallenberg M, Crawshaw JA (2016) In-lake nutrient processing in Te Waihora/Lake Ellesmere. Prepared for Environment Canterbury and Whakaora Te Waihora. University of Otago, Dunedin

    Google Scholar 

  • Schmidt CA, Clark MW (2013) Deciphering and modeling the physicochemical drivers of denitrification rates in bioreactors. Ecol Eng 60:276–288. https://doi.org/10.1016/j.ecoleng.2013.07.041

    Article  Google Scholar 

  • Scott JT, McCarthy MJ, Gardner WS, Doyle RD (2008) Denitrification, dissimilatory nitrate reduction to ammonium, and nitrogen fixation along a nitrate concentration gradient in a created freshwater wetland. Biogeochemistry 87:99–111. https://doi.org/10.1007/s10533-007-9171-6

    Article  Google Scholar 

  • Seitzinger S et al (2006) Denitrification across landscapes & waterscapes: a synthesis. Ecol Appl 16:2064–2090

    Article  Google Scholar 

  • Smyth AR, Geraldi NR, Piehler MF (2013) Oyster-mediated benthic-pelagic coupling modifies nitrogen pools and processes. Mar Ecol Prog Ser 493:23–30

    Article  Google Scholar 

  • Stelzer RS, Scott JT, Bartsch LA, Parr TB (2014) Particulate organic matter quality influences nitrate retention and denitrification in stream sediments: evidence from a carbon burial experiment. Biogeochemistry 119:387–402

    Article  Google Scholar 

  • Steppe TF, Paerl H (2002) Potential N2 fixation by sulfate-reducing bacteria in a marine intertidal microbial mat. Aquat Microb Ecol 28:1–12. https://doi.org/10.3354/ame028001

    Article  Google Scholar 

  • Stief P (2013) Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications. Biogeosciences 10:7829–7846

    Article  Google Scholar 

  • Stief P, Poulsen M, Nielsen LP, Brix H, Schramm A (2009) Nitrous oxide emissions by aquatic macrofauna. PNAS 106:4296–4300

    Article  Google Scholar 

  • Svenningsen NB, Heisterkamp IM, Sigby-Clausen M, Larsen LH, Nielsen LP, Stief P, Schramm A (2012) Shell biofilm nitrification and gut denitrification contribute to emission of nitrous oxide by the invasive freshwater mussel Dreissena polymorpha (zebra mussel). Appl Environ Microbiol 78:4505–4509

    Article  Google Scholar 

  • Teixeira C, Magalhães C, Boaventura RAR, Bordalo AA (2010) Potential rates and environmental controls of denitrification and nitrous oxide production in a temperate urbanized estuary. Mar Environ Res 70:336–342. https://doi.org/10.1016/j.marenvres.2010.07.001

    Article  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder A (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 179–243

    Google Scholar 

  • Turek KA, Hoellein TJ (2015) The invasive Asian clam (Corbicula fluminea) increases sediment denitrification and ammonium flux in 2 streams in the midwestern USA. Freshw Sci 34:472–484. https://doi.org/10.1086/680400

    Article  Google Scholar 

  • Volkenborn N et al (2012) Intermittent bioirrigation and oxygen dynamics in permeable sediments: an experimental and modeling study of three tellinid bivalves. J Mar Res 70:794–823

    Article  Google Scholar 

  • Welsh DT, Bourgues S, Wit Rd, Herbert RA (1996) Seasonal variation in rates of heterotrophic nitrogen fixation (acetylene reduction) in Zostera noltii meadows and uncolonised sediments of the Bassin d’Arcachon, south-west France. Hydrobiologia 329:161–174

    Article  Google Scholar 

  • Welsh DT, Nizzoli D, Fano EA, Viaroli P (2015) Direct contribution of clams (Ruditapes philippinarum) to benthic fluxes, nitrification, denitrification and nitrous oxide emission in a farmed sediment. Estuar Coast Shelf Sci 154:84–93. https://doi.org/10.1016/j.ecss.2014.12.021

    Article  Google Scholar 

  • Woodin SA, Volkenborn N, Pilditch CA, Lohrer AM, Wethey DS, Hewitt JE, Thrush SF (2016) Same pattern, different mechanism: locking onto the role of key species in seafloor ecosystem process. Sci Rep 6:26678. https://doi.org/10.1038/srep26678

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K. Pearson and E. Murray for technical assistance through the duration of this experiment. We thank N. McHugh for analysing the dissolved nutrient samples. J. Crawshaw was supported by a PhD Scholarship from the University of Otago. This research was funded by the New Zealand Sustainable Seas National Science Challenge (Estuary Tipping Points 4.2.1). We thank the editor and three anonymous reviewers for very helpful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josie Crawshaw.

Additional information

Responsible Editor: R. Kelman Wieder.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crawshaw, J., O’Meara, T., Savage, C. et al. Source of organic detritus and bivalve biomass influences nitrogen cycling and extracellular enzyme activity in estuary sediments. Biogeochemistry 145, 315–335 (2019). https://doi.org/10.1007/s10533-019-00608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-019-00608-y

Keywords

Navigation