Dissolved organic carbon leaching from montane grasslands under contrasting climate, soil and management conditions

Abstract

Grasslands are thought to be more vulnerable than many other ecosystems to climate change since their soils are characterized by high organic carbon contents and warming in montane regions is twice the global average rate. Despite these expected vulnerabilities, little is known about how climate change and management influence dissolved organic carbon (DOC) losses from montane grasslands and how relevant these losses are compared to other ecosystem carbon fluxes. In this study, 36 large (1 m2, 140 cm height) grassland lysimeters were filled with undisturbed soil monoliths and operated at three different sites located along an elevational gradient from 860 to 600 m a.s.l. From 2012 to 2014, changes in soil DOC concentrations and DOC leaching losses were quantified under different climate, soil and management (intensive vs. extensive; i.e., differing in the frequency of cutting and manuring events) conditions. The annual DOC leaching losses ranged between 6.6 and 27.5 kg C ha−1 year−1, which was only a minor (< 3%) component of the net ecosystem carbon exchange. DOC leaching losses were not affected by management intensity but were positively correlated with soil organic carbon in the top soil. Climate warming (~ + 2 °C) significantly increased DOC leaching rates for intensive (+ 43%) and extensive management (+ 58%), but only if simultaneous reductions in leachate were moderate. The DOC concentrations in soil water significantly decreased with soil depth. In 10, 30 and 50 cm DOC concentration were positively correlated with aboveground biomass production, indicating that plants play a crucial role in topsoil DOC dynamics. However, this relationship did not occur for DOC in soil water collected at 140 cm, suggesting that adsorption and degradation processes in the subsoil ultimately determine the dynamics of DOC losses below the rooting zone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760-1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801. https://doi.org/10.1002/Joc.689

    Article  Google Scholar 

  2. Bol R, Ostle NJ, Friedrich C, Amelung W, Sanders I (1999) The influence of dung amendments on dissolved organic matter in grassland soil leachates—preliminary results from a lysimeter study. Isot Environ Health Stud 35:97–109

    Article  Google Scholar 

  3. Bradley PM, Fernandez M, Chapelle FH (1992) Carbon limitation of denitrification rates in an anaerobic groundwater system. Environ Sci Technol 26:2377–2381

    Article  Google Scholar 

  4. Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113:357–380. https://doi.org/10.1016/S0016-7061(02)00370-1

    Article  Google Scholar 

  5. Don A, Schulze ED (2008) Controls on fluxes and export of dissolved organic carbon in grasslands with contrasting soil types. Biogeochemistry 91:117–131. https://doi.org/10.1007/s10533-008-9263-y

    Article  Google Scholar 

  6. Dornblaser MM, Striegl RG (2015) Switching predominance of organic versus inorganic carbon exports from an intermediate-size subarctic watershed. Geophys Res Lett 42:386–394. https://doi.org/10.1002/2014GL062349

    Article  Google Scholar 

  7. Evans CD, Freeman C, Monteith DT, Reynolds B, Fenner N (2002) Climate change—terrestrial export of organic carbon—reply. Nature 415:862. https://doi.org/10.1038/415862a

    Article  Google Scholar 

  8. Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001) Export of organic carbon from peat soils. Nature 412:785. https://doi.org/10.1038/35090628

    Article  Google Scholar 

  9. Frey KE, Smith LC (2005) Amplified carbon release from vast West Siberian peatlands by 2100. Geophys Res Lett 32:L09401. https://doi.org/10.1029/2004GL022025

    Article  Google Scholar 

  10. Fu J, Gasche R, Wang N, Lu H, Buttetbach-Bahl K, Kiese R (2017) Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils of S-Germany. Environ Pollut 229:119–131. https://doi.org/10.1016/j.envpol.2017.05.071

    Article  Google Scholar 

  11. Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps: a review. Sci Total Environ 493:1138–1151. https://doi.org/10.1016/j.scitotenv.2013.07.050

    Article  Google Scholar 

  12. Guggenberger G, Zech W (1994) Composition and dynamics of dissolved carbohydrates and lignin degradation products in 2 coniferous forests, NE Bavaria, Germany. Soil Biol Biochem 26:19–27. https://doi.org/10.1016/0038-0717(94)90191-0

    Article  Google Scholar 

  13. Hagedorn F, Joos O (2014) Experimental summer drought reduces soil CO2 effluxes and DOC leaching in Swiss grassland soils along an elevational gradient. Biogeochemistry 117:395–412. https://doi.org/10.1007/s10533-013-9881-x

    Article  Google Scholar 

  14. Hagedorn F, Saurer M, Blaser P (2004) A C-13 tracer study to identify the origin of dissolved organic carbon in forested mineral soils. Eur J Soil Sci 55:91–100. https://doi.org/10.1046/j.1365-2389.2003.00578.x

    Article  Google Scholar 

  15. Harrison AF, Taylor K, Scott A, Poskitt J, Benham D, Grace J, Chaplow J, Rowland P (2008) Potential effects of climate change on DOC release from three different soil types on the Northern Pennines UK: examination using field manipulation experiments. Glob Change Biol 14:687–702. https://doi.org/10.1111/j.1365-2486.2007.01504.x

    Article  Google Scholar 

  16. Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water—fluxes and processes. Environ Pollut 84:301–324. https://doi.org/10.1016/0269-7491(94)90142-2

    Article  Google Scholar 

  17. Jentsch A (2013) Hidden secrets of ecology—biodiversity experiments, climate change research and invasion ecology join up to assess European gradients of resilience in the face of climate extremes. Pan Eur Netw: Sci Technol 08:270

    Google Scholar 

  18. Jones P, New M, Parker D, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37:73–199

    Article  Google Scholar 

  19. Jones SK, Rees RM, Kosmas D, Ball BC, Skiba UM (2006) Carbon sequestration in a temperate grassland; management and climatic controls. Soil Use Manage 22:132–142

    Article  Google Scholar 

  20. Jones SK, Helfter C, Anderson M, Coyle M, Campbell C, Famulari D, Di Marco C, van Dijk N, Tang YS, Topp CF, Kiese R, Kindler R, Siemens J, Schrumpf M, Kaiser K, Nemitz E, Levy PE, Rees RM, Sutton MA, Skiba UM (2017) The nitrogen, carbon and greenhouse gas budget of a grazed, cut and fertilised temperate grassland. Biogeosciences 14:2069–2088. https://doi.org/10.5194/bg-14-2069-2017

    Article  Google Scholar 

  21. Kaiser K, Kalbitz K (2012) Cycling downwards—dissolved organic matter in soils. Soil Biol Biochem 52:29–32. https://doi.org/10.1016/j.soilbio.2012.04.002

    Article  Google Scholar 

  22. Kalbitz K, Solinger S, Park J-H, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  Google Scholar 

  23. Kiese R, Fersch B, Baessler C, Brosy C, Butterbach-Bahl K, Chwala C, Dannenmann M, Fu J, Gasche R, Grote R, Jahn C, Klatt J, Kunstmann H, Mauder M, Rödiger T, Smiatek G, Soltani M, Steinbrecher R, Völksch I, Werhahn J, Wolf B, Zeeman M, Schmid HP (2018) The TERENO Pre-Alpine Observatory: integrating meteorological, hydrological and biogeochemical measurements and modelling. Vadose Zone J 17:180060. https://doi.org/10.2136/vzj2018.03.0060

    Article  Google Scholar 

  24. Kindler R, Siemens J, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, Grunwald T, Heim A, Ibrom A, Jones SK, Jones M, Klumpp K, Kutsch W, Larsen KS, Lehuger S, Loubet B, McKenzie R, Moors E, Osborne B, Pilegaard K, Rebmann C, Saunders M, Schmidt MWI, Schrumpf M, Seyfferth J, Skiba U, Soussana JF, Sutton MA, Tefs C, Vowinckel B, Zeeman MJ, Kaupenjohann M (2011) Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob Change Biol 17:1167–1185. https://doi.org/10.1111/j.1365-2486.2010.02282.x

    Article  Google Scholar 

  25. Lu M, Zhou XH, Yang Q, Li H, Luo YQ, Fang CM, Chen JK, Yang X, Li B (2013) Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94:726–738. https://doi.org/10.1890/12-0279.1

    Article  Google Scholar 

  26. Manninen N, Soinne H, Lemola R, Hoikkala L, Turtola E (2018) Effects of agricultural land use on dissolved organic carbon and nitrogen in surface runoff and subsurface drainage. Sci Total Environ 618:1519–1528. https://doi.org/10.1016/j.scitotenv.2017.09.319

    Article  Google Scholar 

  27. Mauder M, Genzel S, Fu J, Kiese R, Soltani M, Steinbrecher R, Zeeman M, Banerjee T, De Roo F, Kunstmann H (2018) Evaluation of energy balance closure adjustment methods by independent evapotranspiration estimates from lysimeters and hydrological simulations. Hydrol Process 32(1):39–50. https://doi.org/10.1002/hyp.11397

    Article  Google Scholar 

  28. McTiernan KB, Jarvis SC, Scholefield D, Hayes MHB (2001) Dissolved organic carbon losses from grazed grasslands under different management regimes. Water Res 35:2565–2569. https://doi.org/10.1016/S0043-1354(00)00528-5

    Article  Google Scholar 

  29. Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E (2001) Fluxes and concentration of dissolved organic carbon and nitrogen—a synthesis for temperate forests. Biogeochemistry 52:173–205

    Article  Google Scholar 

  30. Neff J, Hooper DU (2002) Vegetation and climate controls on potential CO2, DOC and DOC production in northern latitude soils. Glob Change Biol 8:872–884

    Article  Google Scholar 

  31. Parton WJ, Scurlock JMO, Ojima DS, Schimel DS, Hall DO, Scopegram Group Members (1995) Impact of climate change on grassland production and soil carbon worldwide. Glob Change Biol 1:13–22

    Article  Google Scholar 

  32. Pisani O, Frey SD, Simpson AJ, Simpson MJ (2015) Soil warming and nitrogen deposition alter soil organic matter composition at the molecular-level. Biogeochemistry 123(3):391–409. https://doi.org/10.1007/s10533-015-0073-8

    Article  Google Scholar 

  33. Puissant J, Mills RTE, Robroek BJM, Gavazov K, Perrette Y, De Danieli S, Spiegelberger T, Buttler A, Brun JJ, Cécillon L (2017) Climate change effects on the stability and chemistry of soil organic carbon pools in a subalpine grassland. Biogeochemistry 132:123–139. https://doi.org/10.1007/s10533-016-0291-8

    Article  Google Scholar 

  34. Sandermann J, Baldock JA, Amundson R (2008) Dissolved organic carbon chemistry and dynamics in contrasting forest and grassland soils. Biogeochemistry 89:181–198. https://doi.org/10.1007/s10533-008-9211-x

    Article  Google Scholar 

  35. Sauvé S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131. https://doi.org/10.1021/es9907764

    Article  Google Scholar 

  36. Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20. https://doi.org/10.1023/A:1006247623877

    Article  Google Scholar 

  37. Schulze ED, Luyssaert S, Ciais P, Freibauer A, Janssens IA et al (2009) Importance of methane and nitrous oxide for Europe´s terrestrial greenhouse-gas balance. Nat Geosci 2:842–850. https://doi.org/10.1038/ngeo686

    Article  Google Scholar 

  38. Scott MJ, Jones MN, Woof C, Tipping E (1998) Concentrations and fluxes of dissolved organic carbon in drainage water from an upland peat system. Environ Int 24:537–546. https://doi.org/10.1016/S0160-4120(98)00043-9

    Article  Google Scholar 

  39. Siemens J (2003) The European carbon budget: a gap. Science 302:1681. https://doi.org/10.1126/science.302.5651.1681a

    Article  Google Scholar 

  40. Sjögersten S, Alewell C, Cécillon L, Hagedorn F, Jandl R, Leifeld J, Martinsen V, Schindlbacher A, Sebastian MT, Van Miegroet H (2011) Mountain soils in a changing climate: vulnerability of carbon stocks and ecosystem feedbacks. Soil carbon in sensitive European ecosystems: from science to land management. Wiley, Chichester, pp 118–148. https://doi.org/10.1002/9781119970255.ch6

    Google Scholar 

  41. Smiatek G, Kunstmann H, Knoche R, Marx A (2009) Precipitation and temperature statistics in high-resolution regional climate models: evaluation for the European Alps. J Geophys Res-Atmos. https://doi.org/10.1029/2008JD011353

    Article  Google Scholar 

  42. Souchère V, King C, Dubreuil N, Lecomte-Morel V, Le Bissonnais Y, Chalat M (2003) Grassland and crop trends: role of the European Union Common Agricultural Policy and consequences for runoff and soil erosion. Environ Sci Policy 6:7–16. https://doi.org/10.1016/S1462-9011(02)00121-1

    Article  Google Scholar 

  43. Soussana JF, Allard V, Pilegaard K, Ambus P et al (2007) Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric Ecosyst Environ 121:121–134

    Article  Google Scholar 

  44. Stergiadi M, van der Perk M, de Nijs TCM, Bierkens MFP (2016) Effects of climate change and land management on soil organic carbon dynamics and carbon leaching in northwestern Europe. Biogeosciences 13:1519–1536. https://doi.org/10.5194/bg-13-1519-2016

    Article  Google Scholar 

  45. Tank SE, Striegl RG, McClelland JW, Kokelj SV (2016) Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean. Environ Res Lett. https://doi.org/10.1088/1748-9326/11/5/054015

    Article  Google Scholar 

  46. Tranvik LJ, Jansson M (2002) Climate change—terrestrial export of organic carbon. Nature 415:861–862. https://doi.org/10.1038/415861b

    Article  Google Scholar 

  47. Van den Berg LJ, Shotbolt L, Ashmore MR (2012) Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil, vegetation type and seasonality. Sci Total Environ 427–428:269–276. https://doi.org/10.1016/j.scitotenv.2012.03.069

    Article  Google Scholar 

  48. Wang M, Tian Q, Liao C, Zhao R, Wang D, Wu Y, Li Q, Wang X, Liu F (2019) The fate of litter-derived dissolved organic carbon in forest soils: results from an incubation experiment. Biogeochemistry 144:133–147. https://doi.org/10.1007/s10533-019-00576-3

    Article  Google Scholar 

  49. Wiesmeier M, Hübner R, Barthold F, Spörlein P, Geuß U, Hangen E, Reischl A, Schilling B, von Lützow M, Kögel-Knabner I (2013) Ammount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria). Agric Ecosyst Environ 176:39–52

    Article  Google Scholar 

  50. Zeeman MJ, Mauder M, Steinbrecher R, Heidbach K, Eckart E, Schmid HP (2017) Reduced snow cover affects productivity of upland temperate grasslands. Agric For Meteorol 232:514–526. https://doi.org/10.1016/j.agrformet.2016.09.002

    Article  Google Scholar 

  51. Zistl-Schlingmann M, Feng J, Kiese R, Stephan R, Zuazo P, Willibald G, Wang C, Butterbach-Bahl K, Dannenmann M (2019) Dinitrogen emissions: an overlooked key component of the N balance of montane grasslands. Biogeochemistry 143:15–30. https://doi.org/10.1007/s10533-019-00547-8

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted in the TERENO Pre-Alpine Observatory, where the measuring infrastructure was funded by the Helmholtz Association and the Federal Ministry of Education and Research (BMBF). Further funding was provided by BMBF via the BonaRes SUSALPS (031B0027A) project for KIT IMK-IFU staff and by the China scholarship for Jin Fu and Haiyan Lu as well as the German Academic Exchange Service (DAAD) for Na Wang.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ralf Kiese.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Stephen D. Sebestyen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Gasche, R., Wang, N. et al. Dissolved organic carbon leaching from montane grasslands under contrasting climate, soil and management conditions. Biogeochemistry 145, 47–61 (2019). https://doi.org/10.1007/s10533-019-00589-y

Download citation

Keywords

  • DOC leaching
  • Montane grassland soil
  • Climate change
  • Management
  • Lysimeter