Skip to main content

Advertisement

Log in

Thermal oxidation of carbon in organic matter rich volcanic soils: insights into SOC age differentiation and mineral stabilization

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Radiocarbon ages and thermal stability measurements can be used to estimate the stability of soil organic carbon (OC). Soil OC is a complex reservoir that contains a range of compounds with different sources, reactivities, and residence times. This heterogeneity can shift bulk radiocarbon values and impact assessment of OC stability and turnover in soils. Four soil horizons (Oa, Bhs, Bs, Bg) were sampled from highly weathered 350 ka Pololu basaltic volcanics on the Island of Hawaii and analyzed by Ramped PyrOX (RPO) in both the pyrolysis (PY) and oxidation (OX) modes to separate a complex mixture of OC into thermally defined fractions. Fractions were characterized for carbon stable isotope and radiocarbon composition. PY and OX modes yielded similar results. Bulk radiocarbon measurements were modern in the Oa horizon (Fm = 1.013) and got progressively older with depth: the Bg horizon had an Fm value of 0.73. Activation energy distributions (p(E)) calculated using the ‘rampedpyrox’ model yielded consistent mean E values of 140 kJ mol−1 below the Oa horizon. The ‘rampedpyrox’ model outputs showed a mostly bimodal distribution in the p(E) below the Oa, with a primary peak at 135 kJ mol−1 and a secondary peak at 148 kJ mol−1, while the Oa was dominated by a single, higher E peak at 157 kJ mol−1. We suggest that mineral-carbon interaction, either through mineral surface-OC or metal-OC interactions, is the stabilization mechanism contributing to the observed mean E of 140 kJ mol−1 below the Oa horizon. In the Oa horizon, within individual RPO analyses, radiocarbon ages in the individual thermal fractions were indistinguishable (p > 0.1). The flat age distributions indicate there is no relationship between age and thermal stability (E) in the upper horizon (> 25 cm). Deeper in the soil profile higher µEf values were associated with older radiocarbon ages, with slopes progressively steepening with depth. In the deepest (Bg) horizon, there was the largest, yet modest change in Fm of 0.06 (626 radiocarbon years), indicating that older OC is slightly more thermally stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barre P, Plante AF, Cecillon L, Lutfalla S, Baudin F, Bernard S, Christensen BT, Eglin T, Fernandez JM, Houot S, Katterer T, Le Guillou C, Macdonald A, van Oort F, Chenu C (2016) The energetic and chemical signatures of persistent soil organic matter. Biogeochemistry 130(1–2):1–12

    Article  Google Scholar 

  • Bianchi TS, Galy V, Rosenheim BE, Shields M, Cui XQ, Van Metre P (2015) Paleoreconstruction of organic carbon inputs to an oxbow lake in the Mississippi River watershed: effects of dam construction and land use change on regional inputs. Geophys Res Lett 42(19):7983–7991

    Article  Google Scholar 

  • Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW (2016) Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Change 6(8):751–758

    Article  Google Scholar 

  • Buettner SW, Kramer MG, Chadwick OA, Thompson A (2014) Mobilization of colloidal carbon during iron reduction in basaltic soils. Geoderma 221–222:139–145

    Article  Google Scholar 

  • Chadwick OA, Gavenda RT, Kelly EF, Ziegler K, Olson CG, Elliott WC, Hendricks DM (2003) The impact of climate on the biogeochemical functioning of volcanic soils. Chem Geol 202(3–4):195–223

    Article  Google Scholar 

  • Chadwick OA, Kelly EF, Hotchkiss SC, Vitousek PM (2007) Precontact vegetation and soil nutrient status in the shadow of Kohala Volcano, Hawaii. Geomorphology 89(1–2):70–83

    Article  Google Scholar 

  • Chorover J, Amistadi MK, Chadwick OA (2004) Surface charge evolution of mineral-organic complexes during pedogenesis in Hawaiian basalt. Geochim Cosmochim Acta 68:4859–4876

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173

    Article  Google Scholar 

  • Feng WT, Plante AF, Six J (2013a) Improving estimates of maximal organic carbon stabilization by fine soil particles. Biogeochemistry 112(1–3):81–93

    Article  Google Scholar 

  • Feng X, Vonk JE, Van Dongen BE, Gustafsson Ö, Semiletov IP, Dudarev OV, Wang Z, Montluçon DB, Wacker L, Eglinton TI (2013b) Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. Proc Natl Acad Sci USA 110(35):14168–14173

    Article  Google Scholar 

  • Giambelluca TW, Nullet MA, Schroeder TA (1986) Rainfall atlas of Hawai’i. Department of Land and Natural Resources, Hawai’i

    Google Scholar 

  • Giambelluca TW, Chen Q, Frazier AG, Price JP, Chen Y-L, Chu PS, Eischeid K, Delparte DM (2013) Online rainfall atlas of Hawai‘i. Bull Am Meteorol Soc 94:313–316

    Article  Google Scholar 

  • Gu BH, Schmitt J, Chen Z, Liang LY, McCarthy JF (1995) Adsorption and desorption of different organic-matter fractions on iron-oxide. Geochim Cosmochim Acta 59(2):219–229

    Article  Google Scholar 

  • Hemingway JD (2016) rampedpyrox: open-source tools for thermoanalytical data analysis. http://pypi.python.org/pypi/rampedpyrox. Accessed 5 Aug 2018

  • Hemingway JD, Galy VV, Gagnon AR, Grant KE, Rosengard SZ, Soulet G, Zigah PK, McNichol AP (2017a) Assessing the blank carbon contribution, isotope mass balance, and kinetic isotope fractionation of the ramped pyrolysis/oxidation instrument at NOSAMS. Radiocarbon 59(1):179–193

    Article  Google Scholar 

  • Hemingway JD, Rothman DH, Rosengard SZ (2017b) Galy VV (2017b) Technical note: an inverse method to relate organic carbon reactivity to isotope composition from serial oxidation. Biogeosciences 14:5099–5114

    Article  Google Scholar 

  • Hemingway JD, Hilton RG, Hovius N, Eglinton TI, Haghipour N, Wacker L, Chen M-C, Galy VV (2018) Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils. Science 360(6385):209–212

    Article  Google Scholar 

  • Hemingway JD, Rothman DH, Grant KE, Rosengard SZ, Eglinton TI, Derry LA, Galy VV (2019) Mineral protection regulates the global preservation of natural organic carbon. Nature 570(7760):228

    Article  Google Scholar 

  • Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Pineiro G (2017) The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu Rev Ecol Evol Syst 48(48):419–445

    Article  Google Scholar 

  • Kaiser K, Guggenberger G (2003) Mineral surfaces and soil organic matter. Eur J Soil Sci 54(2):219–236

    Article  Google Scholar 

  • Kleber M, Mikutta R, Torn, Jahn R (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur J Soil Sci 56(6):717–725

    Google Scholar 

  • Kramer MG, Sanderman J, Chadwick OA, Chorover J, Vitousek PM (2012) Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob Change Biol 18(8):2594–2605

    Article  Google Scholar 

  • Kurtz AC, Derry LA, Chadwick OA, Alfano MJ (2000) Refractory element mobility in volcanic soils. Geology 28(8):683–686

    Article  Google Scholar 

  • Kurtz AC, Derry LA, Chadwick OA (2001) Accretion of Asian dust to Hawaiian soils: isotopic, elemental, and mineral mass balance. Geochim et Cosmochim Acta 65:1971–1983

    Article  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60–68

    Article  Google Scholar 

  • Leifeld J, von Lutzow M (2014) Chemical and microbial activation energies of soil organic matter decomposition. Biol Fertil Soils 50(1):147–153

    Article  Google Scholar 

  • Lopez-Capel E, Krull ES, Bol R, Manning DAC (2008) Influence of recent vegetation on labile and recalcitrant carbon soil pools in central Queensland, Australia: evidence from thermal analysis-quadrupole mass spectrometry-isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 22(11):1751–1758

    Article  Google Scholar 

  • Marin-Spiotta E, Chadwick OA, Kramer M, Carbone (2011) Carbon delivery to deep mineral horizons in Hawaiian rain forest soils. J. Geophys. Res. https://doi.org/10.1029/2010JG001587

    Google Scholar 

  • Marín-Spiotta E, Gruley KE, Crawford J, Atkinson EE, Miesel JR, Greene S, Cardona-Correa C, Spencer RGM (2014) Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117(2–3):279–297

    Article  Google Scholar 

  • McNichol AP, Osborne EA, Gagnon AR, Fry B, Jones GA (1994) TIC, TOC, DIC, DOC, PIC, POC—unique aspects in the preparation of oceanographic samples for C-14 AMS. Nucl Instrum Methods Phys Res Sect B 92(1–4):162–165

    Article  Google Scholar 

  • Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77(1):25–56

    Article  Google Scholar 

  • Mikutta R, Schaumann GE, Gildemeister D, Bonneville S, Bonneville S, Kramer MG, Chorover J, Chadwick OA, Guggenberger G (2009) Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3–4100 kyr), Hawaiian Islands. Geochim et Cosmochim Acta 73(7):2034–2060

    Article  Google Scholar 

  • Ohno T, Heckman KA, Plante AF, Fernandez IJ, Parr TB (2017) 14 C mean residence time and its relationship with thermal stability and molecular composition of soil organic matter: a case study of deciduous and coniferous forest types. Geoderma 308:1–8

    Article  Google Scholar 

  • Plante AF, Fernandez JM, Leifeld J (2009) Application of thermal analysis techniques in soil science. Geoderma 153(1–2):1–10

    Article  Google Scholar 

  • Plante AF, Beaupre SR, Roberts ML, Baisden T (2013) Distribution of radiocarbon ages in soil organic matter by thermal fractionation. Radiocarbon 55(2–3):1077–1083

    Article  Google Scholar 

  • Rasmussen C, Torn MS, Southard RJ (2005) Mineral assemblage and aggregates control carbon dynamics in a California Conifer forest. Soil Sci Soc Am J 69(6):1711

    Article  Google Scholar 

  • Rosenheim BE, Galy V (2012) Direct measurement of riverine particulate organic carbon age structure. Geophys Res Lett. https://doi.org/10.1029/2012GL052883

    Google Scholar 

  • Rosenheim BE, Day MB, Domack E, Schrum H, Benthien A, Hayes JM (2008) Antarctic sediment chronology by programmed-temperature pyrolysis: methodology and data treatment. Geochem, Geophys, Geosyst. https://doi.org/10.1029/2007GC001816

    Google Scholar 

  • Rothman DH, Forney DC (2007) Physical model for the decay and preservation of marine organic carbon. Science 316(5829):1325–1328

    Article  Google Scholar 

  • Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56

    Article  Google Scholar 

  • Schreiner KM, Bianchi TS, Rosenheim BE (2014) Evidence for permafrost thaw and transport from an Alaskan North Slope watershed. Geophys Res Lett 41(9):3117–3126

    Article  Google Scholar 

  • Soulet G, Skinner LC, Beaupre SR, Galy V (2016) A note on reporting of reservoir C-14 disequilibria and age offsets. Radiocarbon 58(1):205–211

    Article  Google Scholar 

  • Thompson A, Chadwick OA, Boman S, Chorover J (2006a) Colloid mobilization during soil iron redox oscillations. Environ Sci Technol 40(18):5743–5749

    Article  Google Scholar 

  • Thompson A, Chadwick OA, Rancourt DG, Chorover J (2006b) Iron-oxide crystallinity increases during soil redox oscillations. Geochim Cosmochim Acta 70(7):1710–1727

    Article  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389(6647):170–173

    Article  Google Scholar 

  • Trumbore S (2009) Radiocarbon and soil carbon dynamics. Annu Rev Earth Planet Sci 37:47–66

    Article  Google Scholar 

  • Vetter L, Rosenheim BE, Fernandez A, Tornqvist TE (2017) Short organic carbon turnover time and narrow C-14 age spectra in early Holocene wetland paleosols. Geochem Geophys Geosyst 18(1):142–155

    Article  Google Scholar 

  • Williams EK, Rosenheim BE (2015) What happens to soil organic carbon as coastal marsh ecosystems change in response to increasing salinity? an exploration using ramped pyrolysis. Geochem Geophys Geosyst 16(7):2322–2335

    Article  Google Scholar 

  • Williams EK, Rosenheim BE, McNichol AP, Masiello CA (2014) Charring and non-additive chemical reactions during ramped pyrolysis: applications to the characterization of sedimentary and soil organic material. Org Geochem 77:106–114

    Article  Google Scholar 

  • Williams EK, Fogel ML, Berhe AA, Plante AF (2018) Distinct bioenergetic signatures in particulate versus mineral-associated soil organic matter. Geoderma 330:107–116. https://doi.org/10.1016/j.geoderma.2018.05.02

    Article  Google Scholar 

  • Zhang XW, Bianchi TS, Cui XQ, Rosenheim BE, Ping CL, Hanna AJM, Kanevskiy M, Schreiner KM, Allison MA (2017) Permafrost organic carbon mobilization from the watershed to the Colville River delta: evidence from C-14 ramped pyrolysis and lignin biomarkers. Geophys Res Lett 44(22):11491–11500

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff at NOSAMS for their generous laboratory help and guidance, especially A. Mchnicol, M. Lardie Gaylord, and A. Gagnon. K. Grant would like to thank J. Hemingway for his assistance with the RPO instrument and help with the ‘rampedpyrox’ code, and Gregg McElwee for assistance with ICP instrumentation at Cornell. Marc Kramer helped with field sampling and interpretation of soil organic C properties in the soil horizon.

Funding

This work was partially supported by the Cornell University Atkinson Center Small Grant program and by NSF EAR 1660923 (Derry, PI). KEG was supported by the Cross-Scale Biogeochemistry and Climate – National Science Foundation Integrative Graduate Education and Research Traineeship grant#DGE-1069193 and the Cornell Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine E. Grant.

Additional information

Responsible Editor: Marc G. Kramer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, K.E., Galy, V.V., Chadwick, O.A. et al. Thermal oxidation of carbon in organic matter rich volcanic soils: insights into SOC age differentiation and mineral stabilization. Biogeochemistry 144, 291–304 (2019). https://doi.org/10.1007/s10533-019-00586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-019-00586-1

Keywords

Navigation