Skip to main content

Advertisement

Log in

Labile soil organic carbon loss in response to land conversion in the Brazilian woodland savanna (cerradão)

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Conversion of native vegetation to agriculture may change the carbon cycle by reducing carbon soil storage capacity and increasing CO2 emissions. We aimed to comparatively assess the impact of land use change on labile pools and dynamics of soil organic carbon (SOC) in two land uses (Urochloa pastures and Eucalyptus forestry) relative to the native reference ecosystem (Brazilian woodland savanna, the cerradão), as a function of soil depth and season. For three replicated study sites, each of them including a control area of the native vegetation (Cerrado) and two land uses (Pasture, Eucalyptus), we sampled soil from 0 to 2 m depth in both dry and wet seasons. We quantified dissolved organic carbon (DOC) and microbial biomass carbon (MBC), estimated the microbial quotient (MBC/SOC) and DOC/SOC ratio, and evaluated C dynamics by assessing soil basal respiration and the metabolic quotient (qCO2). Compared with Cerrado, DOC, MBC and MBC/SOC decreased in both Pasture and Eucalyptus. Differences between land uses vanished below 30 cm soil depth. Seasonality affected most analyzed variables, with lower values for DOC, DOC/SOC and qCO2, and slightly higher values for MBC and MBC/SOC in the wet season. In the dry season qCO2 increased in the Eucalyptus topsoil as compared to Cerrado, suggesting higher stress in the microbial community and/or lower decomposition efficiency in Eucalyptus. Overall, our results show that cerradão conversion to pastures and Eucalyptus plantations negatively affects labile pools and dynamics of SOC, with the effects surpassing a strong spatial and seasonal variability in the soil response to land conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarenga MIN, Siqueira JO, Davide AC (1999) Teor de carbono, biomassa microbiana, agregação e micorriza em solos de cerrado com diferentes usos. Cienc Agrotec 23:617–625

    Google Scholar 

  • Anderson TH, Domsch KH (1990) Application of eco-physiological quotients (qC0, and qD) on microbial biomasses from soils of different cropping histories. Soil Biol Biochem 22:251–255

    Google Scholar 

  • Anderson LJ, Derner JD, Polley HW, Gordon WS, Eissenstat DM, Jackson RB (2010) Root responses along a subambient to elevated CO2 gradient in a C3–C4 grassland. Glob Chang Biol 16:454–468

    Google Scholar 

  • Apelbaum A, Yang SF (1981) Biosynthesis of stress ethylene induced by water deficit. Plant Physiol 68:594–596

    Google Scholar 

  • Araújo R, Goedert WJ, Lacerda MPC (2007) Qualidade de um solo sob diferentes usos e sob Cerrado nativo. Rev Bras Cienc Solo 31:1099–1108

    Google Scholar 

  • Arora VK, Boer GJ (2010) Uncertainties in the 20th century carbon budget associated with land use change. Glob Chang Biol 16:3327–3348

    Google Scholar 

  • Bardgett R, Saggar S (1994) Effects of heavy metal contamination on the short-term decomposition of labelled [14C] glucose in a pasture soil. Soil Biol Biochem 26:727–733

    Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis, vol 2. ASA, Madison, pp 364–367

    Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279

    Google Scholar 

  • Brussaard L, van Faassen HG (1994) Effects of compaction on soil biota and soil biological processes. In: Soane BD, van Ouwerkerk C (eds) Developments in agriculture engineering. Elsevier, Amsterdam, pp 215–235

    Google Scholar 

  • Brye KR, Gower ST, Norman JM, Bundy LG (2002) Carbon budgets for a prairie and agroecosystems: effects of land use and interannual variability. Ecol Appl 12:962–979

    Google Scholar 

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, Pulleman M, Sukkel W, van Groenigen JW, Brussaar L (2018) Soil quality—a critical review. Soil Biol Biochem 120:105–125

    Google Scholar 

  • Burket JZ, Dick RP (1998) Microbial and soil parameters in relation to N mineralization in soils of diverse genesis under differing management systems. Biol Fertil Soils 27:430–438

    Google Scholar 

  • Camargo OA, Moniz AC, Jorge JA, Valadares JMAS (1986) Métodos de análise química, mineralógica e física de solos do Instituto Agronômico de Campinas. In: Bol Técn IAC, vol 106. Instituto Agronômico, Campinas, p 94

  • Cambi M, Certini G, Neri F, Marchi E (2015) The impact of heavy traffic on forest soils: a review. For Ecol Manag 338:124–138

    Google Scholar 

  • Carvalho JLN, Raucci GS, Cerri CEP, Bernoux M, Feigl BJ, Wruck FJ, Cerri CC (2010) Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil Till Res 110:175–186

    Google Scholar 

  • Carvalho JLN, Raucci GS, Frazão LA, Cerri CEP, Bernoux M, Cerri CC (2014) Crop-pasture rotation: a strategy to reduce soil greenhouse gas emissions in the Brazilian Cerrado. Agric Ecosyst Environ 183:167–175

    Google Scholar 

  • Castro EA, Kauffman JB (1998) Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J Trop Ecol 14:263–283

    Google Scholar 

  • Cattelan AJ, Vidor C (1990) Flutuações na biomassa, atividade e população microbiana do solo, em função de variações ambientais. Rev Bras Cienc Solo 14:133–142

    Google Scholar 

  • Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113:357–380

    Google Scholar 

  • Corazza EJ, Silva JE, Resck DVS, Gomes AC (1999) Comportamento de diferentes sistemas de manejo como fonte ou depósito de carbono em relação à vegetação de Cerrado. Rev Bras Cienc Solo 23:425–432

    Google Scholar 

  • Costa NL, Townsend CR, Magalhaes JA, Paulino VT, Pereira RGA, Mochietti S (2006) Recuperação de pastagens degradadas. Rev Eletrôn Vet REDVET 7:9–48

    Google Scholar 

  • DAEE—Department of Water and Electric Energy of São Paulo state. http://www.daee.sp.gov.br. Accessed 20 Oct 2017

  • Davidson EA, Verchot LV, Cattanio JH, Ackerman IL, Carvalho JEM (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69

    Google Scholar 

  • de Carvalho F (2005) Atributos Bioquímicos com Indicadores da Qualidade de Solo em Florestas de Araucaria angustifolia (Bert.) O. Ktze. no Estado de São Paulo. Dissertation, University of São Paulo

  • de Souza ED, de Costa SEVGA, Anghinoni I, de Carvalho PCF, Andrigueti M, Caio E (2009) Estoque de carbono orgânico e de nitrogênio no solo em sistema de integração lavoura-pecuária em plantio direto, submetido a intensidades de pastejo. Rev Bras Cienc Solo 33:1829–1836

    Google Scholar 

  • DeGryze S, Six J, Paustian K, Morris SJ, Paul EA, Merckx R (2004) Soil organic carbon pool changes following land-use conversions. Glob Chang Biol 10:1120–1132

    Google Scholar 

  • Del Galdo I, Six J, Peressotti A, Francesca CM (2003) Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Glob Chang Biol 9:1204–1213

    Google Scholar 

  • Dieckow J, Mielnicczuk J, Knicker H, Bayer C, Dick DP, Koguel-Knaber I (2005) Soil C and N stocks as affected by cropping systems and nitrogen fertilization in a southern Brazil Acrisol managed under no-tillage for 17 years. Soil Till Res 81:87–95

    Google Scholar 

  • Dieckow J, Bayer C, Conceição PC, Zanatta JA, Martin-Neto L, Milori DBM, Salton JC, Macedo MM, Mielniczuk J, Hernani LC (2009) Land use, tillage, texture and organic matter stock and composition in tropical and subtropical Brazilian soils. Eur J Soil Sci 60:240–249

    Google Scholar 

  • Durigan G (2006) Observations on the southern cerrados and their relationship with the core area. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and dry forests: diversity, biogeography and conservation. CRC Press, Boca Raton, pp 67–77

    Google Scholar 

  • Durigan G, Ratter JA (2006) Successional changes in cerrado and cerrado/forest ecotonal vegetation in western São Paulo State, Brazil, 1962-2000. Edinburgh J Bot 63:119–130

    Google Scholar 

  • Durigan G, Ratter JA (2016) The need for a consistent fire policy for Cerrado conservation. J Appl Ecol 53:11–15

    Google Scholar 

  • Durigan G, Siqueira MF, Franco GADC (2007) Threats to the Cerrado remnants of the state of São Paulo. Brazil Sci Agric 64:355–363

    Google Scholar 

  • Eglin T, Ciais P, Piao SL, Barre P, Bellassen V, Cadule P, Chenu C, Gasser T, Koven C, Reichstein M, Smith P (2010) Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus B 62:700–718

    Google Scholar 

  • Emteryd O (1989) Chemical and physical analysis of inorganic nutrients in plant, soil, water and air. Stencil, vol 10. SLU, Uppsala, p 181

    Google Scholar 

  • Ferreira EAB, Resck DVS, Gomes AC, Ramos MLG (2007) Carbono e nitrogênio da biomassa microbiana em diferentes sistemas de manejo do solo. Rev Bras Cienc Solo 31:551–562

    Google Scholar 

  • Filep T, Draskovits E, Szabó J, Koós S, László P, Szalai Z (2015) The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary. Environ Monit Assess 187(7):479

    Google Scholar 

  • Forzza RC, Baumgratz JFA, Bicudo CEM et al (2012) New Brazilian floristic list highlights conservation challenges. Bioscience 62:39–45

    Google Scholar 

  • Frazão LA, de Piccolo MC, Feigl BJ et al (2010) Inorganic nitrogen, microbial biomass and microbial activity of a sandy Brazilian Cerrado soil under different land uses. Agric Ecosyst Environ 135:161–167

    Google Scholar 

  • Gama-Rodrigues EF, Barros NF, Gama-Rodrigues AC, Araújo SG (2005) Carbon, nitrogen and activity of microbial biomass in soil under eucalypt plantations. Nitrogênio, carbono e atividade da biomassa microbiana do solo em plantações de eucalipto. Rev Bras Cienc Solo 29:893–901

    Google Scholar 

  • Gama-Rodrigues EF, Barros NF, Viana AP, Santos GA (2008) Alterações na biomassa e na atividade microbiana da serapilheira e do solo, em decorrência da substituição de cobertura florestal nativa por plantações de eucalipto, em diferentes sítios da região Sudeste do Brasil. Rev Bras Cienc Solo 32:1489–1499

    Google Scholar 

  • Geraei DS, Hojati S, Landi A, Cano AF (2016) Total and labile forms of soil organic carbon as affected by land use change in southwestern Iran. Geoderma Reg 7:29–37

    Google Scholar 

  • Gibbs HK, Ruesch AS, Achard F et al (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci 107:16732–16737

    Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371

    Google Scholar 

  • Gregorich EG, Wen G, Voroney RP, Kachanoski RG (1990) Calibration of a rapid direct chloroform extraction method for measuring soil microbial biomass C. Soil Biol Biochem 22:1009–1011

    Google Scholar 

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron 85:221–268

    Google Scholar 

  • Hiltbruner D, Schulze S, Hagedorn F, Schmidt M, Zimmermann S (2012) Cattle trampling alters soil properties and changes soil microbial communities in a Swiss sub-alpine pasture. Geoderma 170:369–377

    Google Scholar 

  • Houghton RA (2012) Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr Opin Environ Sustain 4:597–603

    Google Scholar 

  • Islan KR, Weil RR (2000) Soil quality indicator proprieties in mid-Atlantic soils as influenced by conservation management. J Soil Water Conserv 55:69–78

    Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems—a soil science perspective. Agric Ecosyst Environ 104:399–417

    Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil, measurement and turn over. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, New York, pp 415–471

    Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Google Scholar 

  • Kalambukattu JG, Singh R, Patra AK, Arunkumar K (2013) Soil carbon pools and carbon management index under different land use systems in the Central Himalayan region. Acta Agric Scand B 63:200–205

    Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713

    Google Scholar 

  • Lapola DM, Martinelli LA, Peres CA et al (2013) Pervasive transition of the Brazilian land-use system. Nat Clim Change 4:27–35

    Google Scholar 

  • Lavelle P, Dugdale R, Scholes R et al (2005) Nutrient cycling. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends. Findings of the condition and trends working group of the Millennium Ecosystem Assessment, vol 1. Island Press, Washington, DC

    Google Scholar 

  • Lepsch IF (1980) Influência do cultivo de Eucalyptus e Pinus nas propriedades químicas de solos de cerrado. Rev Bras Cienc Solo 4:103–107

    Google Scholar 

  • Li J, Tong X, Awasthi MK et al (2018) Dynamics of soil microbial biomass and enzyme activities along a chronosequence of desertified land revegetation. Ecol Eng 111:22–30

    Google Scholar 

  • Lilienfein J, Wilcke W, Vilela L, Ayarza MA, Lima SC, Zeck W (2003) Soil fertility under native Cerrado and pasture in the Brazilian savanna. Soil Sci Soc Am J 67:1195–1205

    Google Scholar 

  • Maia SMF, Ogle SM, Cerri CEP, Cerri CC (2009) Effects of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma 149:84–91

    Google Scholar 

  • Maia SMF, Ogle SM, Cerri CCC, Cerri CEP (2010) Changes in soil organic carbon storage under different agricultural management systems in the south-west Amazon region of Brazil. Soil Till Res 106:177–184

    Google Scholar 

  • Maillard E, McConkey BG, Angers DA (2017) Increased uncertainty in soil carbon stock measurement with spatial scale and sampling profile depth in world grasslands: a systematic analysis. Agric Ecosyst Environ 236:268–276

    Google Scholar 

  • Maquere V (2004) Utilisation des terres (cerrado, pâturages, Eucalyptus) et stockage de matière organique dans les sols du Brésil. Dissertation, Université Henri Poincaré

  • Mazzarino MJ, Oliva L, Abil A, Acosta M (1991) Factors affecting nitrogen dynamics in semiarid woodland (Dry Chaco, Argentina). Plant Soil 138:85–98

    Google Scholar 

  • MCTI—Ministério da Ciência, Tecnologia e Inovação (2013) Estimativas Anuais de Emissões de Gases de Efeito Estufa no Brasil, 2nd edn. MCTI, Brasilia, p 190

    Google Scholar 

  • Medvigy D, Wofsy SC, Munger JW, Moorcroft PR (2010) Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proc Natl Acad Sci USA 107:8275–8280

    Google Scholar 

  • Montero LL (2008) Carbono em solos de cerrado: efeitos do uso florestal. Dissertation, University of São Paulo

  • Moura TA, Garrido MS, Sousa CS, Menezes RSC, Sampaio EVSB (2018) Comparison of methods to quantify soil microbial biomass carbono. Acta Sci Agron 40:e39451

    Google Scholar 

  • Muniz LC, Madari BE, Trovo JBF, Cantanhêde ISL, Machado PLOA, Cobucci T, França AFS (2011) Soil biological attributes in pastures of different ages in a crop livestock integrated system. Pesqui Agropecu Bras 46:1262–1268

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Google Scholar 

  • Nardoto GB, Bustamante MMC (2003) Effects of fire on soil nitrogen dynamics and microbial biomass in savannas on Central Brazil. Pesqui Agropecu Bras 38:955–962

    Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL (ed) Methods of soil analysis, Part 2. Agronomy no. 9, monograph series. American Society of Agronomy, Madison, pp 539–579

    Google Scholar 

  • Neufeldt H, Resck DVS, Arzaya MA (2002) Texture and land-use effects on soil organic matter in Cerrado Oxisols, Central Brazil. Geoderma 107:151–164

    Google Scholar 

  • Ocio JA, Brookes PC (1990) An evaluation of methods for measuring microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil Biol Biochem 22:685–694

    Google Scholar 

  • Oliveira JB, Camargo MN, Rossi M, Calderano Filho B (1999) Mapa Pedológico do Estado de São Paulo. IAC/EMBRAPA, Campinas

    Google Scholar 

  • Oliveira JRA, Mendes IC, Vivaldi L (2001) Carbono da biomassa microbiana em solos de Cerrado sob vegetação nativa e sob cultivo: avaliação dos métodos fumigação-incubação e fumigação-extração. Rev Bras Cienc Solo 25:863–871

    Google Scholar 

  • Oliveira WRD, Ramos MLG, Carvalho AM et al (2016) Dynamics of soil microbiological attributes under integrated production systems, continuous pasture, and native cerrado. Pesqui Agropecu Bras 51:1501–1510

    Google Scholar 

  • Oliveira-Filho AT, Ratter JÁ (2002) Vegetation physiognomies and woody flora of the Cerrado biome. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil. Columbia University Press, New York, pp 91–120

    Google Scholar 

  • Phalan B, Bertzky M, Butchart SHM, Donald PF, Scharlemann JPW, Stattersfield AJ, Balmford A (2013) Crop expansion and conservation priorities in tropical countries. PLoS ONE 8(1):e51759

    Google Scholar 

  • Piao SL, Tan K, Nan HJ, Ciais P, Fang JY, Wang T, Vuichard N, Zhu BA (2012) Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past five decades. Glob Planet Change 98–99:73–80

    Google Scholar 

  • Pivello VR, Coutinho LMA (1996) Qualitative successional model to assist in the management of Brazilian cerrados. For Ecol Manag 87:127–138

    Google Scholar 

  • Powlson DS, Brookes PC, Christensen BT (1987) Measurement of soil microbial biomass provides an early indication of changes in the total soil organic matter due to straw incorporation. Soil Biol Biochem 19:159–164

    Google Scholar 

  • Raich JW, Potter CS (1995) Global patterns of carbon dioxide emissions from soils. Glob Biogeochem Cycles 9:23–36

    Google Scholar 

  • Rangel OJP, Silva CA (2007) Estoques de carbono e nitrogênio e frações orgânicas de latossolo submetido a diferentes sistemas de uso e manejo. Rev Bras Cienc Solo 31:1609–1623

    Google Scholar 

  • Reich PB, Borchert R (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J Ecol 72:61–74

    Google Scholar 

  • Ren C, Tao W, Yadong X, Jian D, Fazhu Z, Gaihe Y, Xinhui H, Yongzhong F, Guangxin R (2018) Differential soil microbial community responses to the linkage of soil organic carbon fractions with respiration across land-use changes. For Ecol Manag 409:170–178

    Google Scholar 

  • Resck DVS (1997) O plantio direto como alternativa de sistema de manejo e conservação do solo e da água na região dos Cerrados. In: Congresso Brasileiro de Ciência do Solo, 1997. Anais, vol 26. Empresa Brasileira de Pesquisa Agropecuária, Rio de Janeiro

  • Resck DVS, Silva JE (1995) Efeito de diferentes sistemas de preparo do solo no teor e na meia-vida da matéria orgânica de um Latossolo Vermelho-Escuro argiloso na região dos Cerrados. In: Congresso Brasileiro de Ciência do Solo, 1995, vol 25. Resumos, Viçosa, pp 1837–1839

  • Ribeiro R, Silva MLN, Cardoso EL, Moreira FMS, Curi N, Alovisi AMT (2010) Biomassa e atividade microbiana em solo sob diferentes sistemas de manejo na região fisiográfica Campos das Vertentes—MG. Rev Bras Cienc Solo 34:1585–1592

    Google Scholar 

  • Salton JC (2005) Matéria orgânica e agregação do solo na rotação lavoura-pastagem em ambiente tropical. Dissertation, Universidade Federal do Rio Grande do Sul

  • Salton JC, Mielniczuk J, Bayer C, Fabrício AC, Macedo MCM, Broch DL (2011) Teor e dinâmica do carbono no solo em sistemas de integração lavoura-pecuária. Pesqui Agropecu Bras 46:1349–1356

    Google Scholar 

  • Schiedung H, Bornemann L, Welp G (2017) Seasonal variability of soil organic carbon fractions under arable land. Pedosphere 27:380–386

    Google Scholar 

  • Schoenau JJ, Bettany JR (1987) Organic matter leaching as a component of carbon, nitrogen, phosphorus, and sulfur cycles in a forest, grassland, and gleyed soil. Soil Sci Soc Am J 51:646–651

    Google Scholar 

  • Setia R, Verma SL, Marschner P (2012) Measuring microbial biomass carbon by direct extraction—comparison with chloroform fumigation-extraction. Eur J Soil Biol 53:103–106

    Google Scholar 

  • Siemens J (2003) The European carbon budget: a gap. Science 302:1681

    Google Scholar 

  • Silva JE, Lemanski J, Resack DVS (1994) Perdas de matéria orgânica e suas relações com a capacidade de troca catiônica em solos da região de Cerrados do oeste baiano. Rev Bras Cienc Solo 18:541–547

    Google Scholar 

  • Silva JE, Resck DVS, Corazza EJ, Vivaldi L (2004) Carbon storage in clayey oxisol cultivated pastures in the “cerrado” region, Brazil. Agric Ecosyst Environ 103:357–363

    Google Scholar 

  • Sousa-Neto ER, Gomes L, Nascimento N, Pacheco F, Ometto JP (2018) Land use and land cover transition in Brazil and their effects on greenhouse gas emissions. In: INPE, soil management and climate change. Elsevier, pp 309–321

  • Sparling GP, West AW (1988) A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells. Soil Biol Biochem 20:337–343

    Google Scholar 

  • Straathof AL, Chincarini R, Comans RNJ, Hoffland E (2014) Dynamics of soil dissolved organic carbon pools reveal both hydrophobic and hydrophilic compounds sustain microbial respiration. Soil Biol Biochem 79:109–116

    Google Scholar 

  • Strosser E (2010) Methods for determination of labile soil organic matter: an overview. J Agrobiol 27:49–60

    Google Scholar 

  • Thirukkumaran CM, Parkinson D (2000) Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biol Biochem 32:59–66

    Google Scholar 

  • van Raij B, Quaggio JA, Cantarella H, Ferreira ME, Lopes AS, Bataglia OC (1987) Análise química de solo para fins de fertilidade. Fund. Cargill, Campinas, p 170

    Google Scholar 

  • Vinhal-Freitas IC, Corrêa GF, Wendling B, Bobuľská L, Ferreira AS (2017) Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. Ecol Indic 74:182–190

    Google Scholar 

  • Walkey A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:2938

    Google Scholar 

  • Wardle DAA (1992) Comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358

    Google Scholar 

  • Yang K, Zhu J, Zhang M, Qiaoling Y, Sun OJ (2010) Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. J Plant Ecol 3:175–182

    Google Scholar 

  • Zilli JE, Rumjanek NG, Xavier GR, Coutinho HLC, Neves MCP (2003) Diversidade microbiana como indicador de qualidade do solo. Cadernos Cienc Tec 20:391–411

    Google Scholar 

  • Zinn YL, Resck DVS, Silva JE (2002) Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil. For Ecol Manag 166:285–294

    Google Scholar 

Download references

Acknowledgements

The Conselho Nacional de Desenvolvimento Científco e Tecnológico (CNPq) funded this research through a CNPq-Ciência Sem Fronteiras Project (Proc. 400758/2014-8) and fellowships granted to G.S.B. (Proc. 208405/2017-8) and V.R.P. (Proc. 305253/2015-8). The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) granted a doctorate scholarship to G.S.B. SB and RLP also acknowledge financial support from the Project DRYEX2 (CGL2017-89804-R), funded by the Spanish Ministry of Economy and Competitiveness. The authors are very thankful to the staff of Bauru Botanic Garden and of the University of São Paulo Capital campus and USP Pirassununga campus, and also to Maurício Perine, Ana Clara S. Corsi, Maria Fernanda Pistori, Silvania Correia, Rodrigo Leria, Marcela T. Capoani, and Otaviano Pereira for their great help in the field and lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vânia R. Pivello.

Additional information

Responsible Editor: James Sickman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Brito, G.S., Bautista, S., López-Poma, R. et al. Labile soil organic carbon loss in response to land conversion in the Brazilian woodland savanna (cerradão). Biogeochemistry 144, 31–46 (2019). https://doi.org/10.1007/s10533-019-00570-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-019-00570-9

Keywords

Navigation