Arnold J et al (2018) Evidence for nonstomatal uptake of hg by aspen and translocation of Hg from foliage to tree rings in austrian pine. Environ Sci Technol 52(3):1174–1182. https://doi.org/10.1021/acs.est.7b04468
Article
Google Scholar
Beal SA, Osterberg EC, Zdanowicz CM, Fisher DA (2015) Ice core perspective on mercury pollution during the past 600 years. Environ Sci Technol 49(13):7641–7647. https://doi.org/10.1021/acs.est.5b01033
Article
Google Scholar
Biester H, Bindler R, Martinez-Cortizas A, Engstrom DR (2007) Modeling the past atmospheric deposition of mercury using natural archives. Environ Sci Technol 41(14):4851–4860. https://doi.org/10.1021/es0704232
Article
Google Scholar
Bishop KH, Lee Y-H, Munthe J, Dambrine E (1998) Xylem sap as a pathway for total mercury and methylmercury transport from soils to tree canopy in the boreal forest. Biogeochemistry 40(2–3):101–113. https://doi.org/10.1023/A:1005983932240
Article
Google Scholar
Boyle J, Chiverrell R, Schillereff D (2015) Lacustrine archives of metals from mining and other industrial activities—a geochemical approach. Environ Contam Dev Paleoenviron Res 121:159. https://doi.org/10.1007/978-94-017-9541-8_7
Google Scholar
Chellman N, Mcconnell JR, Arienzo M, Pederson GT, Aarons SM, Csank A (2017) Reassessment of the upper fremont glacier ice-core chronologies by synchronizing of ice-core-water isotopes to a nearby tree-ring chronology. Environ Sci Technol 51(8):4230–4238. https://doi.org/10.1021/acs.est.6b06574
Article
Google Scholar
Chiarantini L, Rimondi V, Benvenuti M, Beutel MW, Costagliola P, Gonnelli C, Paolieri M (2016) Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci Total Environ 569–570:105–113. https://doi.org/10.1016/j.scitotenv.2016.06.029
Article
Google Scholar
Chiarantini L, Rimondi V, Bardelli F, Benvenuti M, Cosio C, Costagliola P, Sarret G (2017) Mercury speciation in Pinus nigra barks from Monte Amiata (Italy): an X-ray absorption spectroscopy study. Environ Pollut 227:83–88. https://doi.org/10.1016/j.envpol.2017.04.038
Article
Google Scholar
Chung M, Dufour A, Pluche R, Thompson S (2017) How much does dry-season fog matter? Quantifying fog contributions to water balance in a coastal California watershed. Hydrol Process 31(22):3948–3961. https://doi.org/10.1002/hyp.11312
Article
Google Scholar
Clackett SP, Porter TJ, Lehnherr I (2018) 400-year record of atmospheric mercury from tree-rings in northwestern Canada. Environ Sci Technol 52(17):9625–9633. https://doi.org/10.1021/acs.est.8b01824
Article
Google Scholar
Conaway CH, Black FJ, Weiss-Penzias P, Gault-Ringold M, Flegal AR (2010) Mercury speciation in Pacific coastal rainwater, Monterey Bay, California. Atmos Environ 44(14):1788–1797. https://doi.org/10.1016/j.atmosenv.2010.01.021
Article
Google Scholar
Conte E, Lombardi F, Battipaglia G, Palombo C, Altieri S, Porta NL, Tognetti R (2018) Growth dynamics, climate sensitivity and water use efficiency in pure vs. mixed pine and beech stands in Trentino (Italy). For Ecol Manage 409:707–718. https://doi.org/10.1016/j.foreco.2017.12.011
Article
Google Scholar
Cutter BE, Guyette RP (1993) Anatomical, chemical, and ecological factors affecting tree species choice in dendrochemistry studies. J Environ Qual 22(3):611. https://doi.org/10.2134/jeq1993.00472425002200030028x
Article
Google Scholar
Fay L, Gustin M (2006) Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment. Water Air Soil Pollut 181(1–4):373–384. https://doi.org/10.1007/s11270-006-9308-6
Google Scholar
Fitzgerald W, Lamborg C (2014) Geochemistry of mercury in the environment. Treatise Geochem. https://doi.org/10.1016/b978-0-08-095975-7.00904-9
Google Scholar
Fleck JA, Grigal DF, Nater EA (1999) Water. Air Soil Pollut 115:513. https://doi.org/10.1023/A:1005194608598
Article
Google Scholar
Frescholtz TF, Gustin MS, Schorran DE, Fernandez GC (2003) Assessing the source of mercury in foliar tissue of quaking aspen. Environ Toxicol Chem 22(9):2114–2119. https://doi.org/10.1002/etc.5620220922
Article
Google Scholar
Fritts HC (1966) Growth-rings of trees: their correlation with climate. Science 154(3752):973–979. https://doi.org/10.1126/science.154.3752.973
Article
Google Scholar
Graydon JA, Louis VL, Lindberg SE, Hintelmann H, Krabbenhoft DP (2006) Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber†. Environ Sci Technol 40(15):4680–4688. https://doi.org/10.1021/es0604616
Article
Google Scholar
Gustin MS, Amos HM, Huang J, Miller MB, Heidecorn K (2015) Measuring and modeling mercury in the atmosphere: a critical review. Atmos Chem Phys 15(10):5697–5713. https://doi.org/10.5194/acp-15-5697-2015
Article
Google Scholar
Gustin MS, Pierce AM, Huang J, Miller MB, Holmes HA, Loria-Salazar SM (2016) Evidence for different reactive Hg sources and chemical compounds at adjacent valley and high elevation locations. Environ Sci Technol 50(22):12225–12231. https://doi.org/10.1021/acs.est.6b03339
Article
Google Scholar
Heerwaarden LM, Toet S, Aerts R (2003) Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos 101(3):664–669. https://doi.org/10.1034/j.1600-0706.2003.12351.x
Article
Google Scholar
Hojdová M et al (2010) Changes in mercury deposition in a mining and smelting region as recorded in tree rings. Water, Air Soil Pollut 216(1–4):73–82. https://doi.org/10.1007/s11270-010-0515-9
Google Scholar
Huang J, Gustin MS (2012) Evidence for a free troposphere source of mercury in wet deposition in the western United States. Environ Sci Technol 46(12):6621–6629. https://doi.org/10.1021/es3005915
Article
Google Scholar
Huang J, Gustin MS (2014) Use of passive sampling methods and models to understand sources of mercury deposition to high elevation sites in the western United States. Environ Sci Technol 49(1):432–441. https://doi.org/10.1021/es502836w
Article
Google Scholar
Huang J, Miller MB, Weiss-Penzias P, Gustin MS (2013) Comparison of gaseous oxidized Hg measured by KCl-coated denuders, and nylon and cation exchange membranes. Environ Sci Technol 47(13):7307–7316. https://doi.org/10.1021/es4012349
Article
Google Scholar
Hutnik RJ, Mcclenahen JR, Long RP, Davis DD (2014) Mercury accumulation in Pinus nigra (Austrian Pine). Northeast Nat 21(4):529–540. https://doi.org/10.1656/045.021.0402
Article
Google Scholar
Jones PD (2004) Climate over past millennia. Rev Geophys 42:4. https://doi.org/10.1029/2003rg000143
Article
Google Scholar
Jung R, Ahn YS (2017) Distribution of mercury concentrations in tree rings and surface soils adjacent to a phosphate fertilizer plant in southern Korea. Bull Environ Contam Toxicol 99(2):253–257. https://doi.org/10.1007/s00128-017-2115-5
Article
Google Scholar
Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77(6):1716–1727. https://doi.org/10.2307/2265777
Article
Google Scholar
Kirchner P, Biondi F, Edwards R, Mcconnell JR (2008) Variability of trace metal concentrations in Jeffrey pine (Pinus jeffreyi) tree rings from the Tahoe Basin, California, USA. J For Res 13(6):347–356. https://doi.org/10.1007/s10310-008-0093-5
Article
Google Scholar
Klieforth Harold (1992) Climate of peavine mountain. Mentzelia 6:3–6
Google Scholar
Lepp N (1975) The potential of tree-ring analysis for monitoring heavy metal pollution patterns. Environ Pollut 9(1):49–61. https://doi.org/10.1016/0013-9327(75)90055-5
Article
Google Scholar
Luthardt L, Rößler R (2017) Fossil forest reveals sunspot activity in the early Permian. Geology 45(3):279–282. https://doi.org/10.1130/g38669.1
Article
Google Scholar
Meko DM, Therrell MD, Baisan CH, Hughes MK (2001) Sacramento river flow reconstructed to A.d. 869 from tree rings1. JAWRA 37(4):1029–1039. https://doi.org/10.1111/j.1752-1688.2001.tb05530.x
Google Scholar
Millhollen AG, Gustin MS, Obrist D (2006) Foliar mercury accumulation and exchange for three tree species. Environ Sci Technol 40(19):6001–6006. https://doi.org/10.1021/es0609194
Article
Google Scholar
(n.d.) Retrieved December 28, 2017, from http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/regional_monitoring/usa.shtml#annual
(n.d.). http://prism.oregonstate.edu/
Navrátil T, Šimeček M, Shanley JB, Rohovec J, Hojdová M, Houška J (2017) The history of mercury pollution near the Spolana chlor-alkali plant (Neratovice, Czech Republic) as recorded by Scots pine tree rings and other bioindicators. Sci Total Environ 586:1182–1192. https://doi.org/10.1016/j.scitotenv.2017.02.112
Article
Google Scholar
Nóvoa-Muñoz J, Pontevedra-Pombal X, Martínez-Cortizas A, Gayoso EG (2008) Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in Southwest Europe (Galicia, NW Spain). Sci Total Environ 394(2–3):303–312. https://doi.org/10.1016/j.scitotenv.2008.01.044
Article
Google Scholar
Odabasi M, Tolunay D, Kara M, Falay EO, Tuna G, Altiok H, Elbir T (2016) Investigation of spatial and historical variations of air pollution around an industrial region using trace and macro elements in tree components. Sci Total Environ 550:1010–1021. https://doi.org/10.1016/j.scitotenv.2016.01.197
Article
Google Scholar
OHara BF (2007) Weather and climate of the Reno-Carson City-Lake Tahoe Region. Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, Reno
Google Scholar
Panshin AJ, De Zeeuw C (1980) Textbook of wood technology, vol 1. McGraw-Hill, New York
Google Scholar
Peckham MA, Gustin MS, Weisberg PJ (2018) Assessment of the suitability of tree rings as archives of atmospheric mercury pollution using tree cores. Environ Sci and Technol (Submitted)
Potter, D. A. (1998). Forested communities of the upper montane in the central and southern Sierra Nevada. Gen. Tech. Rep. PSW-GTR-169. Albany, CA: Pacific Southwest Research Station, Forest Service, US Department of Agriculture, p 319
Prasetia H, Sakakibara M, Omori K, Laird J, Sera K, Kurniawan I (2018) Mangifera indica as bioindicator of mercury atmospheric contamination in an asgm area in North Gorontalo Regency, Indonesia. Geosciences 8(2):31. https://doi.org/10.3390/geosciences8010031
Article
Google Scholar
Rytuba JJ (2014) Naturally elevated monomethylmercury and mercury concentrations of redwood trees of Coastal California. Abstract AGU Fall Conference 2014, December 18, 2014
Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34(1):43–63. https://doi.org/10.1146/annurev.environ.051308.084314
Article
Google Scholar
Siwik EI, Campbell LM, Mierle G (2010) Distribution and trends of mercury in deciduous tree cores. Environ Pollut 158(6):2067–2073. https://doi.org/10.1016/j.envpol.2010.03.002
Article
Google Scholar
Stamenkovic J, Gustin MS (2009) Nonstomatal versus stomatal uptake of atmospheric mercury. Environ Sci Technol 43(5):1367–1372. https://doi.org/10.1021/es801583a
Article
Google Scholar
UNEP (2013) Global mercury assessment 2013: sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva
Google Scholar
Watmough SA (1997) An evaluation of the use of dendrochemical analyses in environmental monitoring. Environ Rev 5(3–4):181–201. https://doi.org/10.1139/a97-010
Article
Google Scholar
Weiss-Penzias PS, Ortiz C, Acosta RP, Heim W, Ryan JP, Fernandez D, Flegal AR (2012) Total and monomethyl mercury in fog water from the central California coast. Geophys Res Lett. https://doi.org/10.1029/2011gl050324
Google Scholar
Weiss-Penzias P, Amos HM, Selin NE, Gustin MS, Jaffe DA, Obrist D, Giang A (2015) Use of a global model to understand speciated atmospheric mercury observations at five high-elevation sites. Atmos Chem Phys 15(3):1161–1173
Article
Google Scholar
Weiss-Penzias PS, Gay DA, Brigham ME, Parsons MT, Gustin MS, Schure AT (2016) Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada. Sci Total Environ 568:546–556. https://doi.org/10.1016/j.scitotenv.2016.01.061
Article
Google Scholar
Wright G, Woodward C, Peri L, Weisberg PJ, Gustin MS (2014a) Application of tree rings [dendrochemistry] for detecting historical trends in air Hg concentrations across multiple scales. Biogeochemistry 120(1–3):149–162. https://doi.org/10.1007/s10533-014-9987-9
Article
Google Scholar
Wright G, Gustin MS, Weiss-Penzias P, Miller MB (2014b) Investigation of mercury deposition and potential sources at six sites from the Pacific Coast to the Great Basin, USA. Sci Total Environ 470–471:1099–1113. https://doi.org/10.1016/j.scitotenv.2013.10.071
Article
Google Scholar
Weiss-Penzias P, Coale K, Heim W, Fernandez D, Oliphant A, Dodge C, Hoskins D, Farlin J, Moranville R, Olson A (2018) Total- and monomethyl-mercury and major ions in coastal California fog water: results from two years of sampling on land and at sea total and monomethyl-mercury in coastal California fog on land and at sea. Elementa: Sci Anthr. https://doi.org/10.12952/journal.elementa.0001011.elementascience.org
Google Scholar
Zhang L et al (1995) Mercury concentration in tree rings of black spruce (Picea mariana Mill. B.S.P.) in boreal Quebec, Canada. Water, Air, Soil Pollut 81(1–2):163–173. https://doi.org/10.1007/bf00477263
Article
Google Scholar
Zhang L, Wu Z, Cheng I, Wright LP, Olson ML, Gay DA, Weiss-Penzias P (2016) The estimated six-year mercury dry deposition across North America. Environ Sci Technol 50(23):12864–12873. https://doi.org/10.1021/acs.est.6b04276
Article
Google Scholar