Uptake of dimethylsulphoniopropionate (DMSP) by the diatom Thalassiosira weissflogii: a model to investigate the cellular function of DMSP

Abstract

One of the most abundant organic sulphur molecules in the ocean, dimethylsulphoniopropionate (DMSP) has been implicated in numerous biochemical functions and ecological interactions, from osmotic and oxidative stress regulation within the cell, to the chemical attraction of bacteria, mammals and birds in the environment. Notwithstanding these varied and important discoveries, the primary role of DMSP in the cell remains elusive. In this study, we take a new approach to investigating the role of DMSP in cell physiology. Rather than utilising a known DMSP-producer, we instead exploit the propensity for the non-DMSP producing diatom Thalassiosira weissflogii to take up DMSP from its environment. We characterise the uptake and retention of the molecule under growth conditions and salinity stress with the aim to elucidate its utility as a model system for investigating the cellular function of DMSP. Thalassiosira weissflogii showed concentration-dependent uptake of DMSP and complete retention within the cell for at least 6 h. Saturation of intracellular DMSP occurred at > 87 mM, equivalent to some of the most prolific DMSP-producing species. Salinity shifts resulted in a reduction in DMSP uptake rate, but only at extremely low (17) or very high (45) salinities. These data demonstrate the potential for using T. weissflogii in physiological studies, providing a true (DMSP-free) control, as well as a DMSP-enriched version of the same strain. In this way, orthogonal experiments may be conducted with the aim to uncover the physiological purpose of DMSP in phytoplankton and potentially add key pieces to the enigmatic DMSP puzzle.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  2. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655

    Article  Google Scholar 

  3. Clarke KR, Gorley RN (2006) PRIMER v6: Unser manual/tutorial. Primer-E, Plymouth

    Google Scholar 

  4. García N, Antoniolópez-Elías J, Miranda A, Nolberta Huerta MM-P, García A (2012) Effect of salinity on growth and chemical composition of the diatom Thalassiosira weissflogii at three culture phases. Lat Am J Aquat Res 40:435–440

    Article  Google Scholar 

  5. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms I. Cyclotella nana Hudsted and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  Google Scholar 

  6. Harada H, Rouse M-A, Sunda W, Kiene PR (2004) Latitudinal and vertical distributions of particle-associated dimethylsulfoniopropionate (DMSP) lyase activity in the western North Atlantic Ocean. Can J Fish Aquat Sci 61:700–711

    Article  Google Scholar 

  7. Hillebrand H, Durselen C, Kirschtel D, Pollinger U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  8. Johnston AWB, Green RT, Todd JD (2016) Enzymatic breakage of dimethylsulfoniopropionate: a signature molecule for life at sea. Curr Opin Chem Biol 31:58–65

    Article  Google Scholar 

  9. Keller MD (1989) Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biol Oceanogr 6:375–382

    Google Scholar 

  10. Kiene RP, Linn LJ (2000) The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP. Geochim Cosmochim Acta 64:2797–2810

    Article  Google Scholar 

  11. Kiene RP, Williams LPH, Walker JE (1998) Seawater microorganisms have a high affinity glycine betaine uptake system which also recognizes dimethylsulfoniopropionate. Aquat Microb Ecol 15:39–51

    Article  Google Scholar 

  12. Kirst GO (1996) Osmotic adjustment in phytoplankton and macroalgae: the use of dimethylsulfoniopropionate (DMSP). In: Kiene RP, Visscher RP, Keller MD, Kirst GO (eds) Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum, New York, pp 121–129

    Google Scholar 

  13. Lavoie M, Waller JC, Kiene RP, Levasseur M (2018) Polar marine diatoms likely take up a small fraction of dissolved dimethylsulfoniopropionate relative to bacteria in oligotrophic environments. Aquat Microbiol Ecol 81:213–218

    Article  Google Scholar 

  14. Lee JSF, Poretsky RS, Cook MA, Reyes-Tomassini JJ, Berejikian BA, Goetz FW (2016) Dimethylsulfoniopropionate (DMSP) increases survival of larval sablefish, Anoplopoma fimbria. J Chem Ecol 42:533–536

    Article  Google Scholar 

  15. Miller TR, Hnilicka K, Dziedzic A, Desplats P, Belas R (2004) Chemotaxis of Silicibacter sp. strain TM1040 toward Dinoflagellate products. Appl Environ Microbiol 70:4692–4701

    Article  Google Scholar 

  16. Moran MA, Reisch CR, Kiene RP, Whitman WB (2012) Genomic insights into bacterial DMSP transformations. Ann Rev Mar Sci 4:523–542

    Article  Google Scholar 

  17. Nevitt GA, Bonadonna F (2005) Sensitivity to dimethylsulfide suggests a mechanism for olfactory navigation by seabirds. Biol Lett 1:303–305

    Article  Google Scholar 

  18. Ruiz-Gonzalez C, Gali M, Sintes E, Herndl GJ, Gasol JM, Simo R (2012) Sunlight effects on the osmotrophic uptake of DMSP-sulfur and leucine by polar phytoplankton. PLoS ONE 7:e45545

    Article  Google Scholar 

  19. Savoca MS, Nevitt GA (2014) Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators. Proc Natl Acad Sci USA 111:4157–4161

    Article  Google Scholar 

  20. Seymour JR, Simó R, Ahmed T, Stocker R (2010) Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329:342–345

    Article  Google Scholar 

  21. Spielmeyer A, Gebser B, Pohnert G (2011) Investigations of the uptake of dimethylsulfoniopropionate by phytoplankton. Chem BioChem 12:2276–2279

    Google Scholar 

  22. Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43:183–197

    Article  Google Scholar 

  23. Stefels J, Van Boekel WHM (1993) Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Mar Ecol Prog Ser 97:11–18

    Article  Google Scholar 

  24. Stefels J, Steinke M, Turner S, Malin G, Belviso S (2007) Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochem 83:245–275

    Article  Google Scholar 

  25. Sunda W, Kieber D, Kiene R, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317

    Article  Google Scholar 

  26. Vila-Costa M, Simó R, Harada H, Gasol JM, Slezak D, Kiene RP (2006) Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 314:652–654

    Article  Google Scholar 

  27. Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290

    Article  Google Scholar 

  28. Wolfe GV, Steinke M, Kirst GO (1997) Grazing-activated chemical defense in a unicellular marine alga. Nature 387:894–897

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Petrou.

Additional information

Responsible Editor: Leila J. Hamdan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petrou, K., Nielsen, D.A. Uptake of dimethylsulphoniopropionate (DMSP) by the diatom Thalassiosira weissflogii: a model to investigate the cellular function of DMSP. Biogeochemistry 141, 265–271 (2018). https://doi.org/10.1007/s10533-018-0507-1

Download citation

Keywords

  • Dimethylsulphoniopropionate
  • Thalassiosira weissflogii
  • Uptake
  • Salinity
  • Osmoregulation