Aquilina L, Poszwa A, Walter C, Vergnaud V, Pierson-Wickmann AC, Ruiz L (2012) Long-term effects of high nitrogen loads on cation and carbon riverine export in agricultural catchments. Environ Sci Technol 46(17):9447–9455
Google Scholar
Anning DW, Flynn ME (2014) Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States Scientific Investigations Report 2014–5012. Nat Water Qual Assess Program. https://doi.org/10.3133/sir20145012
Article
Google Scholar
Archfield SA, Hirsch RM, Viglione A, Bloeschl G (2016) Fragmented patterns of flood change across the United States. Geophys Res Lett 43(19):10232–10239
Google Scholar
Bain DJ, Yesilonis ID, Pouyat RV (2012) Metal concentrations in urban riparian sediments along an urbanization gradient. Biogeochemistry 107(1–3):67–79
Google Scholar
Baker A, Spencer RGM (2004) Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci Total Environ 333(1–3):217–232
Google Scholar
Baldigo BP, Murdoch PS, Burns DA (2005) Stream acidification and mortality of brook trout (Salvelinus fontinalis) in response to timber harvest in Catskill Mountain watersheds, New York, USA. Can J Fish Aquat Sci 62(5):1168–1183
Google Scholar
Beaulieu JJ, Tank JL, Hamilton SK, Wollheim WM, Hall RO Jr, Mulholland PJ, Peterson BJ, Ashkenas LR, Cooper LW, Dahm CN, Dodds WK, Grimm NB, Johnson SL, McDowell WH, Poole GC, Valett HM, Arango CP, Bernot MJ, Burgin AJ, Crenshaw CL, Helton AM, Johnson LT, O’Brien JM, Potter JD, Sheibley RW, Sobota DJ, Thomas SM (2011) Nitrous oxide emission from denitrification in stream and river networks. Proc Natl Acad Sci USA 108(1):214–219
Google Scholar
Bernal S, Hedin LO, Likens GE, Gerber S, Buso DC (2012) Complex response of the forest nitrogen cycle to climate change. Proc Natl Acad Sci 109(9):3406–3411
Google Scholar
Bernhardt ES, Rosi EJ, Gessner MO (2017a) Synthetic chemicals as agents of global change. Front Ecol Environ 15(2):84–90
Google Scholar
Bernhardt ES, Blaszczak JR, Ficken CD, Fork ML, Kaiser KE, Seybold EC (2017b) Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20(4):665–682
Google Scholar
Boman A, Astrom M, Frojdo S (2008) Sulfur dynamics in boreal acid sulfate soils rich in metastable iron sulfide-the role of artificial drainage. Chem Geol 255(1–2):68–77
Google Scholar
Bouraoui F, Grizzetti B (2011) Long term change of nutrient concentrations of rivers discharging in European seas. Science of The Total Environment 409(23):4899–4916
Google Scholar
Boyer EW, Hornberger GM, Bencala KE, McKnight D (1996) Overview of a simple model describing variation of dissolved organic carbon in an upland catchment. Ecol Model 86(2–3):183–188
Google Scholar
Buffam I, Galloway JN, Blum LK, McGlathery KJ (2001) A stormflow/baseflow comparison of dissolved organic matter concentrations and bioavailability in an Appalachian stream. Biogeochemistry 53(3):269–306
Google Scholar
Burgin AJ, Yang WH, Hamilton SK, Silver WL (2011) Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems. Front Ecol Environ 9(1):44–52
Google Scholar
Burns DA, Murdoch PS (2005) Effects of a clearcut on the net rates of nitrification and N mineralization in a northern hardwood forest, Catskill Mountains, New York, USA. Biogeochemistry 72(1):123–146
Google Scholar
Burns DA, Murdoch PS, Lawrence GB, Michel RL (1998) Effect of groundwater springs on NO3
− concentrations during summer in Catskill Mountain streams. Water Resour Res 34(8):1987–1996
Google Scholar
Burns DA, Aiken GR, Bradley PM, Journey CA, Schelker J (2013) Specific ultra-violet absorbance as an indicator of mercury sources in an Adirondack River basin. Biogeochemistry 113:451–466
Google Scholar
Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4(12):839–842
Google Scholar
Butman DE, Wilson HF, Barnes RT, Xenopoulos MA, Raymond PA (2015) Increased mobilization of aged carbon to rivers by human disturbance. Nat Geosci 8(2):112–116
Google Scholar
Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD (1995) Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochem Cycles 9(1):1–10
Google Scholar
Characklis GW, Wiesner MR (1997) Particles, metals, and water quality in runoff from large urban watershed. J Environ Eng 123(8):753–759
Google Scholar
Chiarenzelli J, Lock R, Cady C, Bregani A, Whitney B (2012) Variation in river multi-element chemistry related to bedrock buffering: an example from the Adirondack region of northern New York, USA. Environ Earth Sci 67(1):189–204
Google Scholar
Coble AA, Marcarelli AM, Kane ES, Toczydlowski D, Stottlemeyer R (2016) Temporal patterns of dissolved organic matter biodegradability are similar across three rivers of varying size. J Geophys Res 121(6):1617–1631
Google Scholar
Creed IF, McKnight DM, Pellerin BA, Green MB, Bergamaschi BA, Aiken GR, Burns DA, Findlay SEG, Shanley JB, Striegl RG, Aulenbach BT, Clow DW, Laudon H, McGlynn BL, McGuire KJ, Smith RA, Stackpoole SM (2015) The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum. Can J Fish Aquat Sci 72(8):1272–1285
Google Scholar
Creeper N, Fitzpatrick R, Shand P (2013) The occurrence of inland acid sulphate soils in the floodplain wetlands of the Murray Darling Basin, Australia, identified using a simplified incubation method. Soil Use Manag 29(1):130–139
Google Scholar
Demas SY, Hall AM, Fanning DS, Rabenhorst MC, Dzantor EK (2004) Acid sulfate soils in dredged materials from tidal Pocomoke Sound in Somerset County, MD, USA. Aust J Soil Res 42(5–6):537–545
Google Scholar
Duan SW, Kaushal SS (2013) Warming increases carbon and nutrient fluxes from sediments in streams across land use. Biogeosciences 10:1193–1207
Google Scholar
Duan S, Kaushal SS (2015) Salinization alters fluxes of bioreactive elements from stream ecosystems across land use. Biogeosciences 12:7331–7347
Google Scholar
Duan SW, Xu F, Wang LJ (2007) Long-term changes in nutrient concentrations of the Changjiang River and principal tributaries. Biogeochemistry 85(2):215–234
Google Scholar
Duan S, Newcomer-Johnson T, Mayer P, Kaushal S (2016) Phosphorus retention in stormwater control structures across streamflow in urban and suburban watersheds. Water 8:390
Google Scholar
Dugan HA, Bartlett SL, Burke SM, Doubek JP, Krivak-Tetley FE, Skaff NK, Summers JC, Farrell KJ, McCullough IM, Morales-Williams AM, Roberts DC, Ouyang Z, Scordo F, Hanson PC, Weathers KC (2017) Salting our freshwater lakes. PNAS 114(17):4453–4458
Google Scholar
Dupre B, Viers J, Dandurand JL, Polve M, Benezeth P, Vervier P, Braun JJ (1999) Major and trace elements associated with colloids in organic-rich river waters: ultrafiltration of natural and spiked solutions. Chem Geol 160(1–2):63–80
Google Scholar
European Environment Agency (2012) Nitrate concentrations since the 1950s in selected European rivers. https://www.eea.europa.eu/data-and-maps/figures/nitrate-concentrations-since-the-1950s-in-selected-european-rivers. Accessed 11 Aug 2017
Evans CD, Monteith DT, Cooper DM (2005) Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ Pollut 137(1):55–71
Google Scholar
Fanning DS, Fanning MC (1989) Soil morphology, genesis and classification. Wiley, New York
Google Scholar
Fasching C, Battin TJ (2012) Exposure of dissolved organic matter to UV-radiation increases bacterial growth efficiency in a clear-water Alpine stream and its adjacent groundwater. Aquat Sci 74(1):143–153
Google Scholar
Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55(6):2452–2462
Google Scholar
Findlay SE (2005) Increased carbon transport in the Hudson River: unexpected consequence of nitrogen deposition? Front Ecol Environ 3(3):133–137
Google Scholar
Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574
Google Scholar
Fovet O, Humbert G, Dupas R, Gascuel-Odoux C, Gruau G, Jaffrezic A, Thelusma G, Faucheux M, Gilliet N, Hamon Y, Grimaldi C (2018) Seasonal variability of stream water quality response to storm events captured using high-frequency and multi-parameter data. J Hydrol 559(2018):282–293
Google Scholar
Friedrich G, Pohlmann M (2009) Long-term plankton studies at the lower Rhine/Germany. Limnologica 39(1):14–39
Google Scholar
Frost PC, Song K, Buttle JM, Marsalek J, McDonald A, Xenopoulos MA (2015) Urban biogeochemistry of trace elements: what can the sediments of stormwater ponds tell us? Urban Ecosyst 18(3):763–775
Google Scholar
Gaillardet J, Millot R, Dupre B (2003) Chemical denudation rates of the western Canadian orogenic belt: the Stikine terrane. Chem Geol 201(3–4):257–279
Google Scholar
Gardner JR, Fisher TR, Jordan TE, Knee KL (2016) Balancing watershed nitrogen budgets: accounting for biogenic gases in streams. Biogeochemistry 127(2–3):231–253
Google Scholar
Goolsby DA, Battaglin WA (2001) Long-term changes in concentrations and flux of nitrogen in the Mississippi River Basin, USA. Hydrol Process. https://doi.org/10.1002/hyp.210
Article
Google Scholar
Grimm NB, Gergel SE, McDowell WH, Boyer EW, Dent CL, Groffman P, Hart SC, Harvey J, Johnston C, Mayorga E, McClain ME, Pinay G (2003) Merging aquatic and terrestrial perspectives of nutrient biogeochemistry. Oecologia 137(4):485–501
Google Scholar
Groffman PM, Butterbach-Bahl K, Fulweiler RW, Gold AJ, Morse JL, Stander EK, Tague C, Tonitto C, Vidon P (2009) Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93(1–2):49–77
Google Scholar
Hamshaw SD, Dewoolkar M, Schroth AW, Wemple BC, Rizzo DM (2018) A new machine-learning approach for classifying hysteresis in suspended-sediment discharge relationships using high-frequency monitoring data. Water Resour Res. https://doi.org/10.1029/2017WR022238
Article
Google Scholar
Hartland A, Larsen JR, Andersen MS, Baalousha M, O’Carroll D (2015) Association of arsenic and phosphorus with iron nanoparticles between streams and aquifers: implications for arsenic mobility. Environ Sci Technol 49(24):14101–14109
Google Scholar
Hassellov M, von der Kammer F (2008) Iron oxides as geochemical nanovectors for metal transport in soil-river systems. Elements 4(6):401–406
Google Scholar
Hedin LO, von Fischer JC, Ostrom NE, Kennedy BP, Brown MG, Robertson GP (1998) Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces. Ecology 79(2):684–703
Google Scholar
Helsel DR, Kim JI, Grizzard TJ, Randall CW, Hoehn RC (1979) Land-use influences on metals in storm drainage. J Water Pollut Control Fed 51(4):709–717
Google Scholar
Hood E, Gooseff MN, Johnson SL (2006) Changes in the character of stream water dissolved organic carbon during flushing in three small watersheds, Oregon. J Geophys Res 111(G1)
Hosen JD, McDonough OT, Febria CM, Palmer MA (2014) Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams. Environ Sci Technol 48(14):7817–7824
Google Scholar
Inamdar SP, Mitchell MJ (2007) Storm event exports of dissolved organic nitrogen (DON) across multiple catchments in a glaciated forested watershed. J Geophys Res 112(G2)
Inamdar S, Singh S, Dutta S, Levia D, Mitchell M, Scott D, Bais H, McHale P (2011) Fluorescence characteristics and sources of dissolved organic matter for stream water during storm events in a forested mid-Atlantic watershed. J Geophys Res 116(G03043)
Jacinthe PA, Bills JS, Tedesco LP, Barr RC (2012) Nitrous oxide emission from riparian buffers in relation to vegetation and flood frequency. J Environ Qual 41(1):95–105
Google Scholar
Jacinthe PA, Vidon P, Fisher K, Liu X, Baker ME (2015) Soil methane and carbon dioxide fluxes from cropland and riparian buffers in different hydrogeomorphic settings. J Environ Qual 44(4):1080–1090
Google Scholar
Jayawickreme DH, Santoni CS, Kim JH, Jobbagy EG, Jackson RB (2011) Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina. Ecol Appl 21(7):2367–2379
Google Scholar
Jenne EA (1968) Controls on Mn Fe Co Ni Cu and Zn concentrations in soils and water - significant role of hydrous Mn and Fe oxides. Adv Chem Ser 73:337
Google Scholar
Kaushal SS (2016) Increased salinization decreases safe drinking water. Environ Sci Technol 50(6):2765–2766
Google Scholar
Kaushal SS, Belt KT (2012) The urban watershed continuum: evolving spatial and temporal dimensions. Urban Ecosyst 15(2):409–435
Google Scholar
Kaushal SS, Lewis WM (2005) Fate and transport of organic nitrogen in minimally disturbed montane streams of Colorado, USA. Biogeochemistry 74(3):303–321
Google Scholar
Kaushal SS, Groffman PM, Likens GE, Belt KT, Stack WP, Kelly VR, Band LE, Fisher GT (2005) From the cover: increased salinization of fresh water in the northeastern United States. Proc Nat Acad Sci 102(38):13517–13520
Google Scholar
Kaushal SS, Groffman PM, Band LE, Shields CA, Morgan RP, Palmer MA, Belt KT, Fisher GT, Swan CM (2008) Findlay SEG (2008) Interaction between urbanization and climate variability amplifies watershed nitrate export in Maryland. Environ Sci Technol 42:5872–5878. https://doi.org/10.1021/es800264f
Article
Google Scholar
Kaushal SS, Likens GE, Jaworski NA, Pace ML, Sides AM, Seekell D, Belt KT, Secor DH, Wingate RL (2010) Rising stream and river temperatures in the United States. Front Ecol Environ 8(9):461–466
Google Scholar
Kaushal SS, Likens GE, Utz RM, Pace ML, Grese M, Yepsen M (2013) Increased river alkalinization in the eastern US. Environ Sci Technol 47(18):10302–10311
Google Scholar
Kaushal SS, McDowell WH, Wollheim WM (2014a) Tracking evolution of urban biogeochemical cycles: past, present, and future. Biogeochemistry 121(1):1–2
Google Scholar
Kaushal SS, Mayer PM, Vidon PG, Smith RM, Pennino MJ, Newcomer TA, Duan S, Welty C, Belt KT (2014b) Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications. J Am Water Resour Assoc 50(3):585–614
Google Scholar
Kaushal SS, Delaney-Newcomb K, Findlay SEG, Newcomer TA, Duan S, Pennino MJ, Sivirichi GM, Sides-Raley AM, Walbridge MR, Belt KT (2014c) Longitudinal patterns in carbon and nitrogen fluxes and stream metabolism along an urban watershed continuum. Biogeochemistry 121(1):23–44
Google Scholar
Kaushal SS, Duan S, Doody TR, Haq S, Smith RM, Johnson TAN, Newcomb KD, Gorman J, Bowman N, Mayer PM, Wood KL, Belt KT, Stack WP (2017) Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Appl Geochem 83:121–135
Google Scholar
Kaushal SS, Likens GE, Pace ML, Utz R, Haq S, Gorman J, Grese M (2018) Freshwater salinization syndrome on a continental scale. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1711234115
Article
Google Scholar
Kelly V, Stets EG, Crawford C (2015) Long-term changes in nitrate conditions over the 20th century in two Midwestern Corn Belt streams. J Hydrol 525:559–571
Google Scholar
Kerr JG, Eimers MC, Creed IF, Adams MB, Beall F, Burns D, Campbell JL, Christopher SF, Clair TA, Courchesne F, Duchesne L, Fernandez I, Houle D, Jeffries DS, Likens GE, Mitchell MJ, Shanley J, Yao H (2012) The effect of seasonal drying on sulphate dynamics in streams across southeastern Canada and the northeastern USA. Biogeochemistry 111(1–3):393–409
Google Scholar
Kim DG, Mishurov M, Kiely G (2010) Effect of increased N use and dry periods on N2O emission from a fertilized grassland. Nutr Cycl Agroecosyst 88(3):397–410
Google Scholar
Kim DG, Vargas R, Bond-Lamberty B, Turetsky MR (2012) Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9(7):2459–2483
Google Scholar
Koenig LE, Shattuck MD, Snyder LE, Potter JD, McDowell WH (2017) Deconstructing the effects of flow on DOC, nitrate, and major ion interactions using a high-frequency aquatic sensor network. Water Resour Res. https://doi.org/10.1002/2017WR020739
Article
Google Scholar
Kritzberg ES, Ekstrom SM (2012) Increasing iron concentrations in surface waters—a factor behind brownification? Biogeosciences 9(4):1465–1478
Google Scholar
Kritzberg ES, Villanueva AB, Jung M, Reader HE (2014) Importance of boreal rivers in providing iron to marine waters. PLoS ONE 9(9):1–10
Google Scholar
Kuusisto-Hjort P, Hjort J (2013) Land use impacts on trace metal concentrations of suburban stream sediments in the Helsinki region, Finland. Sci Total Environ 456:222–230
Google Scholar
Leventhal J, Taylor C (1990) Comparison of methods to determine degree of pyritization. Geochim Cosmochim Acta 54(9):2621–2625
Google Scholar
Likens GE (2013) Biogeochemistry of a forested ecosystem, 3rd edn. Springer, New York, p 208
Google Scholar
Likens GE, Driscoll CT, Buso DC, Siccama TG, Johnson CE, Lovett GM, Ryan DF, Fahey T, Reiners WA (1994) The biogeochemistry of potassium at Hubbard Brook. Biogeochemistry 25(2):61–125
Google Scholar
Loecke TD, Burgin AJ, Riveros-Iregui DA, Ward AS, Thomas SA, Davis CA, St Clair MA (2017) Weather whiplash in agricultural regions drives deterioration of water quality. Biogeochemistry 133(1):7–15
Google Scholar
Lu YH, Bauer JE, Canuel EA, Yamashita Y, Chambers RM, Jaffe R (2013) Photochemical and microbial alteration of dissolved organic matter in temperate headwater streams associated with different land use. J Geophys Res 118(2):566–580
Google Scholar
Lu YH, Bauer JE, Canuel EA, Chambers RM, Yamashita Y, Jaffe R, Barrett A (2014) Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams. Biogeochemistry 119(1–3):275–292
Google Scholar
Lupon A, Sabater F, Minarro A, Bernal S (2016) Contribution of pulses of soil nitrogen mineralization and nitrification to soil nitrogen availability in three Mediterranean forests. Eur J Soil Sci 67(3):303–313
Google Scholar
Mallakpour I, Villarini G (2015) The changing nature of flooding across the central United States. Nat Clim Chang 5(3):250–254
Google Scholar
Martin JM, Meybeck M (1979) Elemental mass-balance of material carried by major world rivers. Mar Chem 7(3):173–206
Google Scholar
McGlynn BL, McDonnell JJ (2003) Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resour Res 39(4)
McKnight DM, Bencala KE (1990) The chemistry of iron, aluminum, and dissolved organic material in 3 acidic, metal-enriched, mountain streams, as controlled by watershed and in-stream processes. Water Resour Res 26(12):3087–3100
Google Scholar
McLaughlin C, Kaplan LA (2013) Biological lability of dissolved organic carbon in stream water and contributing terrestrial sources. Freshw Sci 32(4):1219–1230
Google Scholar
Mei Y, Hornberger GM, Kaplan LA, Newbold JD, Aufdenkampe AK (2014) The delivery of dissolved organic carbon from a forested hillslope to a headwater stream in southeastern Pennsylvania, USA. Water Resour Res 50(7):5774–5796
Google Scholar
Meybeck M, Lestel L, Carré C, et al. (2016) Trajectories of river chemical quality issues over the Longue Durée: the Seine River (1900s–2010). Environ Sci Pollut Res 1–17
Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Climate change—stationarity is dead: whither water management? Science 319(5863):573–574
Google Scholar
Minaudo C, Meybeck M, Moatar F, Gassama N, Curie F (2015) Eutrophication mitigation in rivers: 30 years of trends in spatial and seasonal patterns of biogeochemistry of the Loire River (1980-2012). Biogeosciences 12(8):2549–2563
Google Scholar
Mitchell AC, Brown GH, Fuge R (2006) Minor and trace elements as indicators of solute provenance and flow routing in a subglacial hydrological system. Hydrol Process 20(4):877–897
Google Scholar
Mohiuddin KM, Zakir HM, Otomo K, Sharmin S, Shikazono N (2010) Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. Int J Environ Sci Technol 7(1):17–28
Google Scholar
Monteith DT, Stoddard JL, Evans CD, Wit HA, Forsius M, Hogasen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–541
Google Scholar
Morse JL, Ardon M, Bernhardt ES (2012) Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses. Ecol Appl 22(1):264–280
Google Scholar
Mosley LM, Biswas TK, Cook FJ, Marschner P, Palmer D, Shand P, Yuan C, Fitzpatrick RW (2017) Prolonged recovery of acid sulfate soils with sulfuric materials following severe drought: causes and implications. Geoderma 308:312–320
Google Scholar
Muhrizal S, Shamshuddin J, Husni MHA, Fauziah I (2003) Alleviation of aluminum toxicity in an acid sulfate soil in Malaysia using organic materials. Commun Soil Sci Plant Anal 34(19–20):2993–3012
Google Scholar
Mulholland PJ, Wilson GV, Jardine PM (1990) Hydrogeochemical response of a forested watershed to storms—effects of preferential flow along shallow and deep pathways. Water Resour Res 26(12):3021–3036
Google Scholar
Naiman RJ, Decamps H, McClain ME (2005) Riparia: ecology, conservation, and management of streamside communities. Elsevier, New Yrok
Google Scholar
Nodvin SC, Driscoll CT, Likens GE (1986) The effect of pH on sulfate adsorption by a forest soil. Soil Sci 142(2):69–75
Google Scholar
Paerl HW (1997) Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol Oceanogr 42:1154–1165
Google Scholar
Petrone KC, Fellman JB, Hood E, Donn MJ, Grierson PF (2011) The origin and function of dissolved organic matter in agro-urban coastal streams. J Geophys Res 116 (G01028)
Pons LJ, Vandermo Wh (1973) Soil genesis under dewatering regimes during 1000 years of polder development. Soil Sci 116(3):228–235
Google Scholar
Poulton SW, Raiswell R (2002) The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am J Sci 302(9):774–805
Google Scholar
Rabenhorst MC, Valladares TM (2005) Estimating the depth to sulfide-bearing materials in upper cretaceous sediments in landforms of the Maryland coastal plain. Geoderma 126(1–2):101–116
Google Scholar
Raiswell R (2011) Iron transport from the continents to the open ocean: the aging-rejuvenation cycle. Elements 7(2):101–106
Google Scholar
Raiswell R, Canfield DE (2012) the iron biogeochemical cycle past and present. Geochem Perspect 1(1):1–220
Google Scholar
Raymond PA, Saiers JE (2010) Event controlled DOC export from forested watersheds. Biogeochemistry 100(1–3):197–209
Google Scholar
Raymond PA, Spencer RGM (2015) Riverine DOM. Biogeochemistry of marine dissolved organic matter, 2nd edn. Academic Press, Cambridge, p 509+
Google Scholar
Raymond PA, Oh N-H, Turner RE, Broussard W (2008) Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451(7177):449–452
Google Scholar
Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC Press, Boca Raton
Google Scholar
Reisinger AJ, Rosi EJ, Bechtold HA, Doody TR, Kaushal SS, Groffman PM (2017) Recovery and resilience of urban stream metabolism following Superstorm Sandy and other floods. Ecosphere. https://doi.org/10.1002/ecs2.1776
Article
Google Scholar
Rohatgi A (2017) WebPlotDigitizer, Version 3.12. http://arohatgi.info/WebPlotDigitizer. Accessed 11 Aug 2017 and 20 Oct 2017
Romero E, Le Gendre R, Garnier J, Billen G, Fisson C, Silvestre M, Riou P (2016) Long-term water quality in the lower Seine: lessons learned over 4 decades of monitoring. Environ Sci Policy 58:141–154
Google Scholar
Rosenberg BD, Schroth AW (2017) Coupling of reactive riverine phosphorus and iron species during hot transport moments: impacts of land cover and seasonality. Biogeochemistry 132(1–2):103–122
Google Scholar
Sarkkola S, Nieminen M, Koivusalo H, Lauren A, Kortelainen P, Mattsson T, Palviainen M, Piirainen S, Starr M, Finer L (2013) Iron concentrations are increasing in surface waters from forested headwater catchments in eastern Finland. Sci Total Environ 463:683–689
Google Scholar
Schoepfer VA, Bernhardt ES, Burgin AJ (2014) Iron clad wetlands: soil iron-sulfur buffering determines coastal wetland response to salt water incursion. J Geophys Res Biogeosci 119(12):2209–2219
Google Scholar
Schroth AW, Crusius J, Chever F, Bostick BC, Rouxel OJ (2011) Glacial influence on the geochemistry of riverine iron fluxes to the Gulf of Alaska and effects of deglaciation. Geophys Res Lett 38 (L16605)
Google Scholar
Schroth AW, Crusius J, Hoyer I, Campbell R (2014) Estuarine removal of glacial iron and implications for iron fluxes to the ocean. Geophys Res Lett 41(11):3951–3958
Google Scholar
Seitzinger SP, Phillips L (2017) Nitrogen stewardship in the Anthropocene. Science 357(6349):350–351
Google Scholar
Sieczko AK, Demeter K, Singer GA, Tritthart M, Preiner S, Mayr M, Meisterl K, Peduzzi P (2016) Aquatic methane dynamics in a human-impacted river-floodplain of the Danube. Limnol Oceanogr 61:S175–S187
Google Scholar
Sinha E, Michalak AM, Balaji V (2017) Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357(6349):405–408
Google Scholar
Sloto RA (2003) Historical ground-water-flow patterns and trends in iron concentrations in the Potomac–Raritan–Magothy aquifer system in parts of Philadelphia, Pennsylvania, and Camden and Gloucester Counties, New Jersey. USGS Report No. 2003-4255
Smith RM, Kaushal SS (2015) Carbon cycle of an urban watershed: exports, sources, and metabolism. Biogeochemistry 126(1–2):173–195
Google Scholar
Smith RM, Kaushal SS, Beaulieu JJ, Pennino MJ, Welty C (2017) Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams. Biogeosciences 14(11):2831–2849
Google Scholar
St. Louis VL, Rudd JW, Kelly CA, Beaty CA, Beaty KG, Bloom NS, Flett RJ (1994) Importance of wetlands as sources of methyl mercury to boreal forest ecosystems. Can J Fish Aquat Sci 51:1065–1076
Google Scholar
Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C (2015) The trajectory of the Anthropocene: the great acceleration. Anthr Rev 2(1):81–98
Google Scholar
Syvitski JPM, Kettner A (2011) Sediment flux and the Anthropocene. Philos Trans R Soc A 369(1938):957–975
Google Scholar
Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA (2017) The integral role of iron in ocean biogeochemistry. Nature 543(7643):51–59
Google Scholar
Tripler CE, Kaushal SS, Likens GE, Walter MT (2006) Patterns in potassium dynamics in forest ecosystems. Ecol Lett 9(4):451–466
Google Scholar
US EPA (2015) Fertilizer applied for agricultural purposes; EPA’s report on the environment. https://cfpub.epa.gov/roe/indicator.cfm?i=55#2. Accessed 11 Aug 2017
Valdemarsen T, Kristensen E, Holmer M (2010) Sulfur, carbon, and nitrogen cycling in faunated marine sediments impacted by repeated organic enrichment. Mar Ecol Prog Ser 400:37–53
Google Scholar
Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Science 37:130–137
Google Scholar
Vaughan MCH, Bowden WB, Shanley JB, Vermilyea A, Sleeper R, Gold AJ, Pradhanang SM, Inamdar SP, Levia DF, Andres AS, Birgand F, Schroth AW (2017) High-frequency dissolved organic carbon and nitrate measurements reveal differences in storm hysteresis and loading in relation to land cover and seasonality. Water Resour Res 53(7):5345–5363
Google Scholar
Vidon P, Wagner LE, Soyeux E (2008) Changes in the character of DOC in streams during storms in two Midwestern watersheds with contrasting land uses. Biogeochemistry 88(3):257–270
Google Scholar
Vidon P, Allan C, Burns D, Duval TP, Gurwick N, Inamdar S, Lowrance R, Okay J, Scott D, Sebestyen S (2010) Hot spots and hot moments in riparian zones: potential for improved water quality management. J Am Water Resour Assoc 46(2):278–298
Google Scholar
Vidon P, Jacinthe P-A, Liu X, Fisher K, Baker M (2014a) Hydrobiogeochemical controls on riparian nutrient and greenhouse gas dynamics: 10 years post-restoration. J Am Water Resour Assoc 50(3):639–652
Google Scholar
Vidon P, Carleton W, Mitchell M (2014b) Mercury proxies and mercury dynamics in a forested watershed of the US Northeast. Environ Monit Assess 186:7475–7488
Google Scholar
Vidon P, Marchese S, Rook S (2017) Impact of hurricane Irene and tropical storm lee on riparian zone hydrology and biogeochemistry. Hydrol Process 31(2):476–488
Google Scholar
Viers J, Dupre B, Polve M, Schott J, Dandurand JL, Braun JJ (1997) Chemical weathering in the drainage basin of a tropical watershed (Nsimi-Zoetele site, Cameroon): comparison between organic-poor and organic-rich waters. Chem Geol 140(3–4):181–206
Google Scholar
Warren LA, Haack EA (2001) Biogeochemical controls on metal behaviour in freshwater environments. Earth Sci Rev 54(4):261–320
Google Scholar
Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Galuszka A, Cearreta A, Edgeworth M, Ellis EC, Ellis M, Jeandel C, Leinfelder R, McNeill JR, Richter DD, Steffen W, Syvitski J, Vidas D, Wagreich M, Williams M, An ZS, Grinevald J, Odada E, Oreskes N, Wolfe AP (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351(6269):137+
Google Scholar
Welsch DL, Burns DA, Murdoch PS (2004) Processes affecting the response of sulfate concentrations to clearcutting in a northern hardwood forest, Catskill Mountains, New York, USA. Biogeochemistry 68(3):337–354
Google Scholar
Williams CJ, Frost PC, Morales-Williams AM, Larson JH, Richardson WB, Chiandet AS, Xenopoulos MA (2016) Human activities cause distinct dissolved organic matter composition across freshwater ecosystems. Glob Chang Biol 22(2):613–626
Google Scholar
Wilson HF, Xenopoulos MA (2008) Ecosystem and seasonal control of stream dissolved organic carbon along a gradient of land use. Ecosystems 11(4):555–568
Google Scholar
Wilson HF, Xenopoulos MA (2009) Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat Geosci 2(1):37–41
Google Scholar
Wilson HF, Saiers JE, Raymond PA, Sobczak WV (2013) Hydrologic drivers and seasonality of dissolved organic carbon concentration, nitrogen content, bioavailability, and export in a forested New England stream. Ecosystems 16(4):604–616
Google Scholar
Wilson HF, Raymond PA, Saiers JE, Sobczak WV, Xu N (2016) Increases in humic and bioavailable dissolved organic matter in a forested New England headwater stream with increasing discharge. Mar Freshw Res 67(9):1279–1292
Google Scholar
Wollheim WM, Mulukutla GK, Cook C, Carey RO (2017) Aquatic nitrate retention at river network scales across flow conditions determined using nested in situ sensors. Water Resour Res. https://doi.org/10.1002/2017WR020644
Article
Google Scholar
Worrall F, Harriman R, Evans CD, Watts CD, Adamson J, Neal C, Tipping E, Burt T, Grieve I, Monteith D, Naden PS (2004) Trends in dissolved organic carbon in UK rivers and lakes. Biogeochemistry 70(3):369–402
Google Scholar
Zhang Q, Brady DC, Ball WP (2013) Long-term seasonal trends of nitrogen, phosphorus, and suspended sediment load from the non-tidal Susquehanna River Basin to Chesapeake Bay. Sci Total Environ 452:208–221
Google Scholar