Skip to main content
Log in

Net nitrogen mineralization in Alberta bog peat is insensitive to experimentally increased nitrogen deposition and time since wildfire

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Across northern Alberta, Canada, bogs experience periodic wildfire and, in the Fort McMurray region, are exposed to increasing atmospheric N deposition related to oil sands development. As the fire return interval shortens and/or growing season temperatures increase, the regional peatland CO2–C sink across northern Alberta will likely decrease, but the magnitude of the decrease could be diminished if increasing atmospheric N deposition alters N cycling in a way that stimulates post-fire successional development in bogs. We quantified net ammonification, nitrification, and dissolved organic N (DON) production in surface peat along a post-fire chronosequence of five bogs where we also experimentally manipulated N deposition (no water controls plus 0, 10, and 20 kg N ha−1 yr−1 simulated deposition, as NH4NO3). Initial KCl-extractable NH4+–N, NO3–N and DON averaged 176 ± 6, 54 ± 0.2, and 3580 ± 40 ng N cm−3, respectively, with no consistent changes as a function of time since fire and no consistent effects of experimental N addition. Net ammonification, nitrification, and DON production averaged 3.8 ± 0.3, 1.6 ± 0.2, and 14.3 ± 2.0 ng N cm−3 d−1, also with no consistent changes as a function of time since fire and no consistent effects of experimental N addition. Our hypothesis that N mineralization would be stimulated after fire because root death would create a pulse of labile soil organic C was not supported, most likely because ericaceous plant roots typically are not killed in boreal bog wildfires. The absence of any N mineralization response to experimental N addition is most likely a result of rapid immobilization of added NH4+–N and NO3–N in peat with a wide C:N ratio. In these boreal bogs, belowground N cycling is likely characterized by large DON pools that turn over relatively slowly and small DIN pools that turn over relatively rapidly. For Alberta bogs that have persisted at historically low N deposition values and begin to receive higher N deposition related to anthropogenic activities, peat N mineralization processes may be largely unaffected until the peat C:N ratio reaches a point that no longer favors immobilization of NH4+–N and NO3–N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994

    Article  Google Scholar 

  • Anderson R, Wells C, Macrae M, Price J (2013) Nutrient mineralization and functional diversity in a restored bog approach natural conditions 10 years post restoration. Soil Biol Biochem 64:37–47

    Article  Google Scholar 

  • Bayley SE, Thormann MN, Szumigalski AR (2005) Nitrogen mineralization and decomposition in western boreal bog and fen peat. Écoscience 12:455–465

    Article  Google Scholar 

  • Benscoter BW, Vitt DH (2008) Spatial and temporal patterns in bog ground layer composition along a post-fire chronosequence. Ecosystems 11:1054–1064

    Article  Google Scholar 

  • Benscoter BW, Vitt DH, Wieder RK (2005) Linking microtopography with post-fire succession in bogs. J Veg Sci 16:453–460

    Article  Google Scholar 

  • Berendse F, van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob Chang Biol 7:591–598

    Article  Google Scholar 

  • Bonnett SAF, Ostle N, Freeman C (2010) Short-term effect of deep shade and enhanced nitrogen supply on Sphagnum capillifolium morphophysiology. Plant Ecol 207:347–358

    Article  Google Scholar 

  • Bragazza L, Limpens J (2004) Dissolved organic nitrogen dominates in European bogs under increasing atmospheric N deposition. Glob Biogeochem Cy 18:1–5

    Article  Google Scholar 

  • Bragazza L, Tahvanainen T, Kutnar T, Rydin H, Limpens J, Hájek M, Grosvernier P, Hájek T, Hajkiva O, Hansen I, Iacumin O, Gerdol R (2004) Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. Glob Chang Biol 7:591–598

    Google Scholar 

  • Bragazza L, Limpens J, Gerdol R, Grosvernier P, Hájek M, Hájek T, Hajkova P, Hansen I, Iacumin P, Kutnar L, Rydin H, Tahvanainen T (2005) Nitrogen concentration and δ15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Glob Chang Biol 11:106–114

    Article  Google Scholar 

  • Calmes MA, Zasada JC (1982) Some reproductive traits of four shrub species in the black spruce forest type of Alaska. Can Field Nat 96:35–40

    Google Scholar 

  • Cardinali A, Pizzeghello D, Zanin G (2015) Fatty acid methyl ester (FAME) succession in different substrates as affected by the co-application of three pesticides. PLoS ONE. https://doi.org/10.1371/journal.pone.0145501

    Google Scholar 

  • DeVito KJ, Westbrook CJ, Schiff SL (1999) Nitrogen mineralization and nitrification in upland and peatland forest soils in two Canadian shield catchments. Can J Forest Res 29:1793–1804

    Article  Google Scholar 

  • Dooley SR, Treseder KK (2012) The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109:49–61

    Article  Google Scholar 

  • Eno CH (1960) Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci Soc Am Proc 24:277–279

    Article  Google Scholar 

  • Flinn MA, Wein RW (1977) Depth of underground plant organs and theoretical survival during fire. Can J Bot 55:2550–2554

    Article  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils 22:59–65

    Article  Google Scholar 

  • Frostegård A, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    Google Scholar 

  • Hayden MJ, Ross DS (2005) Denitrification as a nitrogen removal mechanism in a Vermont peatland. J Environ Qual 34:2052–2061

    Article  Google Scholar 

  • Högberg MN, Högberg P, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601

    Article  Google Scholar 

  • Holden SR, Treseder KK (2013) A meta-analysis of soil microbial biomass responses to forest disturbances. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00163

    Google Scholar 

  • Hu Y, Zheng Q, Wanek W (2017) Flux analysis of free amino sugars and amino acids in soils by isotope tracing with a novel liquid chromatography/High resolution mass spectrometry platform. Anal Chem 89:9192–9200

    Article  Google Scholar 

  • Jiroušek M, Hájek T, Bragazza L (2011) Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe. Environ Pollut 159:585–590

    Article  Google Scholar 

  • Keller JK, Bridgham SD (2007) Pathways of anaerobic carbon cycling across an ombrotrophic-minerotrophic peatland gradient. Limnol Oceanogr 52:96–107

    Article  Google Scholar 

  • Kielland K (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383

    Article  Google Scholar 

  • Lamers LPM, Bobbink R, Roelofs JGM (2000) Natural nitrogen filter fails in raised bogs. Glob Chang Biol 6:583–586

    Article  Google Scholar 

  • Langley JA, Chapman SK, Hungate BA (2006) Ectomycorrhizal colonization slows root decomposition: the post mortem fungal legacy. Ecol Lett 9:955–959

    Article  Google Scholar 

  • Limpens J, Berendse F, Klees H (2003) N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol 157:339–347

    Article  Google Scholar 

  • Limpens J, Heijmans MMPG, Berendse F (2006) The nitrogen cycle in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin, pp 195–230

    Chapter  Google Scholar 

  • Limpens J, Granath G, Gunnarsson U, Aerts R, Bayley S, Bragazza L, Bubier J, Buttler A, van den Berg LJL, Francez A-J, Gerdol R, Grosvernier P, Heijmans MMPD, Hoosbeek MR, Hotes S, Ilomets M, Leith I, Mitchell EAD, Moore T, Nilsson MB, Nordbakken J-F, Rochefort L, Rydin H, Sheppard LJ, Thormann M, Wiedermann MM, Williams BL, Xu B (2011) Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytol 191:496–507

    Article  Google Scholar 

  • Mallik I, Mallik AU (1997) Effects of Ledum groenlandicum amendments on soil characteristics and black spruce seedling growth. Plant Ecol 133:29–36

    Article  Google Scholar 

  • Malmer N, Wallén B (2004) Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes. The Holocene 14:111–117

    Article  Google Scholar 

  • Malmer N, Svensson BM, Wallén B (1994) Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobot Phytotax 29:483–496

    Article  Google Scholar 

  • Malmer N, Albinsson C, Svensson BH, Wallén B (2003) Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos 100:469–482

    Article  Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S, and P through soil organic matter. Geoderma 26:267–286

    Article  Google Scholar 

  • Parminter J (1984) Fire-ecological Relationships for the Biogeoclimatic Zones of the Northern Portion of the Mackenzie Timber Supply Area Summary Report. Ministry of Forests, Victoria

    Google Scholar 

  • Read DJ, Bajwa R (1985) Some nutritional aspects of the biology of ericaceous mycorrhizas. Proc Royal Soc Edinburgh 85B:317–332

    Google Scholar 

  • Robertson GP, Groffman PM (2015) Nitrogen transformations. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 4th edn. Academic Press, Burlington, Massachusetts, pp 421–446

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Smithwick EAH, Turner MG, Mack MC, Chapin FS III (2005) Postfire soil N cycling in northern conifer forests affected by severe stand-replacing wildfires. Ecosystems 8:163–181

    Article  Google Scholar 

  • Stribley DP, Read DJ (1980) The biology of mycorrhiza of the Ericaceae. VII. The relationship between mycorrhizal infection and the capacity to utilize simple and complex nitrogen sources. New Phytol 86:365–371

    Article  Google Scholar 

  • Stromberger ME, Keith AM, Schmidt O (2012) Distinct microbial and faunal communities and translocated carbon in Lumbricus terrestris drilospheres. Soil Biol Biochem 46:155–162

    Article  Google Scholar 

  • Thormann MN (2006a) Diversity and function of fungi in peatlands: a carbon cycling perspective. Can J Soil Sci 86:281–293

    Article  Google Scholar 

  • Thormann MN (2006b) The role of fungi in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin, pp 101–123

    Chapter  Google Scholar 

  • Turetsky MR, Amiro BD, Bosch E, Bhatti JS (2004) Historical burn area in western Canadian peatland and its relationship to fire weather indices. Glob Biogeochem Cy. https://doi.org/10.1029/2004gb002222

    Google Scholar 

  • Urban NR, Eisenreich SJ, Bayley SE (1988) The relative importance of denitrification and nitrate assimilation in midcontinental bogs. Limnol Oceanogr 33:1611–1617

    Article  Google Scholar 

  • van Belle G, Fisher LD, Heagerty PJ, Lumley T (2004) Biostatistics, a methodology for the health sciences, 2nd edn. Wiley, Hoboken, pp 894

  • Vasander H, Kettunen U (2006) Carbon in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin, pp 165–194

    Chapter  Google Scholar 

  • Verhoeven JTA, Kooijman AM, van Wirdum G (1988) Mineralization of N and P along a trophic gradient in a freshwater mire. Biogeochemistry 6:31–43

    Article  Google Scholar 

  • Verhoeven J, Maltz E, Schmitz B (1990) Nitrogen and phosphorus mineralization in fens and bogs. J Ecol 78:713–726

    Article  Google Scholar 

  • Vile MA, Wieder RK, Živković T, Scott KD, Vitt DH, Hartsock JA, Iosue CL, Quinn JC, Petix M, Fillingim HM, Popma JMA, Dynarski KA, Jackman TR, Albright CM, Wykoff DD (2014) N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry 121:317–328

    Article  Google Scholar 

  • Vitt DH (2006) Functional characteristics and indicators of boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin, pp 9–24

    Chapter  Google Scholar 

  • Vitt DH, Halsey LA, Bauer IE, Campbell C (2000) Spatial and temporal trends of carbon sequestration in peatlands of continental western Canada through the Holocene. Can J Earth Sci 37:683–693

    Article  Google Scholar 

  • Wanek W, Mooshammer M, Blöchl A, Hanreich A, Richter A (2010) Determination of gross rates of amino acid production and immobilization in decomposing leaf letter by a novel 15N isotope pool dilution technique. Soil Biol Biochem 42:1293–1302

    Article  Google Scholar 

  • Westbrook CJ, DeVito KJ (2004) Gross nitrogen transformations in soils from uncut and cut boreal upland and peatland coniferous forest stands. Biogeochemistry 68:33–50

    Article  Google Scholar 

  • Wieder RK (2016) Peatland porewater chemistry nonresponsive to five years of experimentally augmented atmospheric N deposition. Nitrogen Critical Loads Five-year Final Repor. CEMA AWG Nitrogen Eutrophication Task Group, Cumulative Environmental Management Association, Edmonton, Alberta, May 2016

  • Wieder K, Vitt DH, Benscoter BW (2006) Peatlands and the boreal forest. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin, pp 1–8

    Chapter  Google Scholar 

  • Wieder RK, Scott KD, Kamminga K, Vile MA, Vitt DH, Bone T, Xu B, Benscoter BW, Bhatti JS (2009) Postfire carbon balance in boreal bogs of Alberta, Canada. Glob Change Biol 15:63–81

    Article  Google Scholar 

  • Wieder RK, Vile MA, Scott KD, Albright CM, McMillen KJ, Vitt DH, Fenn ME (2016a) Differential effects of high atmospheric N and S deposition on bog plant/lichen tissue and porewater chemistry across the Athabasca oil sands region. Environ Sci Technol 50:12630–12640

    Article  Google Scholar 

  • Wieder RK, Vile MA, Albright CM, Scott KD, Vitt DH, Quinn JC, Burke-Scoll M (2016b) Effects of altered atmospheric nutrient deposition from Alberta oil sands development on Sphagnum fuscum growth and C, N and S accumulation in peat. Biogeochemistry 129:1–19

    Article  Google Scholar 

  • Williams B, Wheatley R (1988) Nitrogen mineralisation and water-table height in oligotrophic deep peat. Biol Fert Soils 6:141–147

    Article  Google Scholar 

  • Wray HE, Bayley SE (2008) Nitrogen dynamics in floating and non-floating peatlands in the Western Boreal Plain. Can J Soil Sci 88:697–708

    Article  Google Scholar 

  • Xu B (2004) Post-fire root biomass and ectomycorrhizal associations in the western continental Canadian boreal peatlands. M.S. Thesis, Villanova University, Villanova, Pennsylvania, USA

Download references

Acknowledgements

Cara Albright, Hope Fillingim, Kelly McMillen, Mikah Schlesinger, and Kimberli Scott provided assistance in the field and in the lab. This work was supported by the National Science Foundation (Grants 1143719 and 1256985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kelman Wieder.

Additional information

Responsible Editor: Breck Bowden.

Nitrogen mineralization, peat bulk density and water content, and air temperature data can be accessed through the Environmental Data Initiative (https://doi.org/10.6073/pasta/6d1222f36fec96a3f5f26713441f14d5).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuart, J.E.M., Wieder, R.K. & Vile, M.A. Net nitrogen mineralization in Alberta bog peat is insensitive to experimentally increased nitrogen deposition and time since wildfire. Biogeochemistry 138, 155–170 (2018). https://doi.org/10.1007/s10533-018-0437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-018-0437-y

Keywords

Navigation