Alexander RB, Smith RA, Schwarz GE, Boyer EW, Nolan JV, Brakebill JW (2008) Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River. Environ Sci Technol 42:822–830
Article
Google Scholar
Allmendinger NE, Pizzuto JE, Potter N, Johnson TE, Hession WC (2005) The influence of riparian vegetation on stream width, Eastern Pennsylvania, USA. Geol Soc Am Bull 177:229–243
Article
Google Scholar
APHA (2012) Standard method for the examination of water and wastewater. American Public Health Association, Washington, DC
Google Scholar
Arango CP, Tank JL, Schaller JL, Royer TV, Bernot MJ, David MB (2007) Benthic organic carbon influences denitrification in streams with high nitrate concentration. Freshw Biol 52:1210–1222
Article
Google Scholar
Bernhardt ES, Palmer MA, Allan JD, Alexander G, Barnas K, Brooks S, Carr J, Clayton S, Dahm C, Follstad-Shah J, Galat D, Gloss S, Goodwin P, Hart D, Hassett B, Jenkinson R, Katz S, Kondolf GM, Lake PS, Lave R, Meyer JL, O’Donnell TK, Pagano L, Powell B, Sudduth E (2005) Synthesizing U.S. river restoration efforts. Science 308:636–637
Article
Google Scholar
Bernot MJ, Dodds WK, Gardner WS, McCarthy MJ, Sobolev D, Tank JL (2003) Comparing denitrification estimates for a Texas estuary by using acetylene inhibition and membrane inlet mass spectrometry. Appl Environ Microbiol 69:5950–5956
Article
Google Scholar
Blann KL, Anderson JL, Sands GR, Vondracek B (2009) Effects of agricultural drainage on aquatic ecosystems: a review. Environ Sci Technol 39:909–1001
Article
Google Scholar
Brock TD (1961) Chloramphenicol. Bacteriol Rev 25:32–48
Google Scholar
Bruesewitz DA, Hoellein TJ, Mooney RF, Gardner WS, Buskey EJ (2017) Wastewater influences nitrogen dynamics in a coastal catchment during a prolonged drought. Limnol Oceanogr. https://doi.org/10.1002/lno.10576
Article
Google Scholar
Brunet RC, Pinay G, Gazelle F, Roques L (1994) Role of the floodplain and riparian zone in suspended matter and nitrogen retention in the Adour River, South-West France. Regul Rivers 9:55–63
Article
Google Scholar
Brye KR, Norman JM, Bundy LG, Gower ST (2001) Nitrogen and carbon leaching in agroecosystems and their role in denitrification potential. J Environ Qual 30:58–70
Article
Google Scholar
Bukaveckas PA (2007) Effects of channel restoration on water velocity, transient storage, and nutrient uptake in a channelized stream. Environ Sci Technol 41:1570–1576
Article
Google Scholar
Burchell MR II, Skaggs RW, Lee CR, Broome S, Chescheir GM, Osborne J (2007) Substrate organic matter to improve nitrate removal in surface-flow constructed wetlands. J Environ Qual 36:194–207
Article
Google Scholar
Cuadra PE, Vidon P (2011) Storm nitrogen dynamics in tile-drain flow in the US Midwest. Biogeochemistry 104:293–308. https://doi.org/10.1007/s10533-010-9502-x
Article
Google Scholar
D’Ambrosio JL (2013) Perspectives on the geomorphic evolution and ecology of modified channels and two-stage ditches in the agriculturally-dominated Midwestern United States. The Ohio State University, Columbus
Google Scholar
D’Ambrosio JL, Ward AD, Witter JD (2015) Evaluating geomorphic change in constructed two-stage ditches. J Am Water Resour Assoc 51:910–922. https://doi.org/10.1111/1752-1688.12334
Article
Google Scholar
Davis RT, Tank JL, Mahl UH, Winikoff SG, Roley SS (2015) The influence of two-stage ditches with constructed floodplains on water column nutrients and sediments in agricultural streams. J Am Water Resour Assoc 51:1–15. https://doi.org/10.1111/1752-1688.12341
Article
Google Scholar
Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella C (2002) Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron J 94:153–171
Article
Google Scholar
Dodds WK, Tank JL, Pontius J, Hamilton SK, Grimm NB, Bowden WB, Peterson BJ, Valett HM, Webster JR, Gregory S (2004) Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia 140:458–467
Article
Google Scholar
Ensign SM, Doyle MW (2005) In-channel transient storage and associated nutrient retention: evidence from experimental manipulations. Limnol Oceanogr 50:1740–1751
Article
Google Scholar
Forshay KJ, Stanley EH (2005) Rapid nitrate loss and denitrification in a temperate river floodplain. Biogeochemistry 75:43–64
Article
Google Scholar
García-Ruiz R, Pattinson SN, Whitton BA (1998) Denitrification in river sediments: relationship between process rate and properties of water and sediment. Freshw Biol 39:467–476
Article
Google Scholar
Gergel SE, Carpenter SR, Stanley EH (2005) Do dams and levees impact nitrogen cycling? Simulating effects of flood alterations on floodplain denitrification. Glob Change Biol 11:1352–1367. https://doi.org/10.1111/j.1365-2486.2005.00966.x
Article
Google Scholar
Gift DM, Groffman PM, Kaushal SS, Mayer PM (2010) Denitrification potential, root biomass, and organic matter in degraded and restored urban riparian zones. Restor Ecol 18:113–120
Article
Google Scholar
Gregory SV, Swanson FJ, McKee WA, Cummins KW (1991) An ecosystem perspective of riparian zones. Bioscience 41:540–551
Article
Google Scholar
Griffiths NA, Tank JL, Roley SS, Stephen ML (2012) Decomposition of maize leaves and grasses in restored agricultural streams. Freshw Sci 31:848–864
Article
Google Scholar
Griffiths NA, Tank JL, Royer TV, Roley SS, Rosi-Marshall EJ, Whiles MR, Beaulieu JJ, Johnson LT (2013) Agricultural land use alters the seasonality and magnitude of stream metabolism. Limnol Oceanogr 58:1513–1529
Article
Google Scholar
Groffman PM, Tiedje JM (1988) Denitrification hysteresis during wetting and drying cycles in soil. Soil Sci Soc Am J 52:1626–1629
Article
Google Scholar
Groffman PM, Crawford MK (2003) Denitrification potential in urban riparian zones. J Environ Qual 32:1144–1149
Article
Google Scholar
Groffman PM, Dorsey AM, Mayer PM (2005) N processing within geomorphic structures in urban streams. J N Am Benthol Soc 24:613–625
Article
Google Scholar
Hamme RC, Emerson SC (2004) The solubility of neon, nitrogen, and argon in distilled water and seawater. Deep Sea Res Part I 51:1517–1528
Article
Google Scholar
Hedin LO, von Fischer JC, Ostrom NE, Kennedy BP, Brown MG, Robertson GP (1998) Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces. Ecology 79:684–703
Google Scholar
Hernandez ME, Mitsch WJ (2007a) Denitrification potential and organic matter as affected by vegetation community, wetland age, and plant introduction in created wetlands. J Environ Qual 36:333–342
Article
Google Scholar
Hernandez ME, Mitsch WJ (2007b) Denitrification in created riverine wetlands: influence of hydrology and season. Ecol Eng 30:78–88
Article
Google Scholar
Hill AR, Devito KJ, Campagnolo S, Sanmugadas K (2000) Subsurface denitrification in a forest riparian zone: interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry 51:193–223
Article
Google Scholar
Holmes RM, Jones JB, Fisher SG, Grimm NB (1996) Denitrification in a nitrogen-limited stream ecosystem. Biogeochemistry 33:125–146
Article
Google Scholar
Inwood SE, Tank JL, Bernot MJ (2007) Factors controlling sediment denitrification in midwestern streams of varying land use. Microb Ecol 53:247–258
Article
Google Scholar
Jaynes DB, Hatfield JL, Meek DW (1999) Water quality in Walnut Creek Watershed: herbicides and nitrate in surface waters. J Environ Qual 28:45–59
Article
Google Scholar
Junk WJ, Bayley PB, Spark RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (eds) Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences, pp 110–121
Kana TM, Darkangel C, Hunt MD, Oldham JB, Bennett GE, Cornwell JC (1994) Membrane inlet mass spectrometry for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal Chem 66:4166–4170
Article
Google Scholar
Kana TM, Sullivan MB, Cornwell JC, Groszkowski KM (1998) Denitrification in estuarine sediments determined by membrane inlet mass spectrometry. Limnol Oceanogr 43:334–339
Article
Google Scholar
Kaushal SS, Groffman PM, Mayer PM, Striz E, Gold AJ (2008) Effects of stream restoration on denitrification in an urbanizing watershed. Ecol Appl 18:789–804
Article
Google Scholar
Kaushal SS, Mayer PM, Vidon PG, Smith RM, Pennino MJ, Newcomer TA, Duan S, Welty C, Belt KT (2014) Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications. J Am Water Resour Assoc 50:585–614. https://doi.org/10.1111/jawr.12204
Article
Google Scholar
Kladivko EJ, Frankenberger JR, Jaynes DB, Meek DW, Jenkinson BJ, Fausey NR (2004) Nitrate leaching to subsurface drains as affected by drain spacing and changes in crop production system. J Environ Qual 33:1803–1813
Article
Google Scholar
Kleeberg A, Kohler J, Sukhodolova T, Sukhodolov A (2010) Effects of aquatic macrophytes on organic matter deposition, resuspension, and phosphorus entrainment in a lowland river. Freshw Biol 55:326–345
Article
Google Scholar
Knowles R (1982) Denitrification. Microbiol Rev 46:43–70
Google Scholar
Kroeger R, Dunne EJ, Novak J, King KW, McLellan E, Smith DR, Strock J, Boomer K, Tomer M, Noe GB (2013) Downstream approaches to phosphorus management in agricultural landscapes: regional applicability and use. Sci Total Environ 442:263–274
Article
Google Scholar
Landwehr K, Rhoads BL (2003) Depositional response of a headwater stream to channelization, east central Illinois, USA. River Res Appl 19:77–100. https://doi.org/10.1002/rra.699
Article
Google Scholar
Lemke AM, Kirkham KG, Lindenbaum TT, Herbert ME, Tear TH, Perry WL, Herkert JR (2011) Evaluating agricultural best management practices in tile-drained subwatersheds of the Mackinaw River, Illinois. J Environ Qual 40:1215–1228
Article
Google Scholar
Mahl UH, Tank JL, Roley SS, Davis RT (2015) Two-stage ditch floodplains enhance N-removal capacity and reduce turbidity and dissolved P in agricultural streams. J Am Water Resour Assoc 51:923–940. https://doi.org/10.1111/1752-1688.12340
Article
Google Scholar
McClain ME, Boyer EW, Dent L, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312. https://doi.org/10.1007/s10021-003-0161-9
Article
Google Scholar
McMillan SK, Noe G (2017) Increasing floodplain connectivity through urban stream restoration increases nutrient and sediment retention. Ecol Eng 108:284–295. https://doi.org/10.1016/j.ecoleng.2017.08.006
Article
Google Scholar
McMillan SK, Piehler MF, Thompson SP, Paerl HW (2010) Denitrification of nitrogen released from senescing algal biomass in coastal agricultural headwater streams. J Environ Qual 39:274–281
Article
Google Scholar
McMillan SK, Tuttle AK, Jennings GD, Gardner A (2014) Influence of restoration age and riparian vegetation on reach-scale nutrient retention in restored urban streams. J Am Water Resour Assoc 50:626–638. https://doi.org/10.1111/jawr.12205
Article
Google Scholar
Meyer JL, McDowell WH, Bott TL, Elwood JW, Ishizaki C, Melack JM, Peckarsky BL, Peterson BJ, Rublee PA (1988) Elemental dynamics in streams. J N Am Benthol Soc 7:410–432
Article
Google Scholar
Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36
Article
Google Scholar
Naiman RJ, Decamps H, Pastor J, Johnston CA (1988) The potential importance of boundaries to fluvial ecosystems. J N Am Benthol Soc 7:289–306
Article
Google Scholar
Newcomer TA, Kaushal SS, Mayer PM, Shields AR, Canuel EA, Groffman PM, Gold AJ (2012) Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams. Ecol Monogr 82:449–466
Article
Google Scholar
Noe GB, Hupp CR (2005) Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic Coastal Plain rivers, USA. Ecol Appl 15:1178–1190
Article
Google Scholar
Noe GB, Hupp CR, Rybicki NB (2013) Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands. Ecosystems 16:75–94
Article
Google Scholar
O’Connell MD, Baldwin DS, Robertson AI, Rees G (2000) Release and bioavailability of dissolved organic matter from floodplain litter: influence of origin and oxygen levels. Freshw Biol 45:333–342
Article
Google Scholar
Opdyke MR, David MB (2007) Response of sediment denitrification rates to environmental variables in streams heavily impacted by agriculture. J Freshw Ecol 22:371–382. https://doi.org/10.1080/02705060.2007.9664166
Article
Google Scholar
Opdyke MR, David MB, Rhoads BL (2006) Influence of geomorphological variability in channel characteristics on sediment denitrification in agricultural streams. J Environ Qual 35:2103–2112. https://doi.org/10.2134/jeq2006.0072
Article
Google Scholar
Orr CH, Stanley EH, Wilson KA, Finlay JC (2007) Effects of restoration and reflooding on soil denitrification in a leveed Midwestern floodplain. Ecol Appl 17:2365–2376
Article
Google Scholar
Osborne LL, Kovacic DA (1993) Riparian vegetated buffer strips in water-quality restoration and stream management. Freshw Biol 29:243–258
Article
Google Scholar
Piña-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81:111–130
Article
Google Scholar
Powell KL, Bouchard V (2010) Is denitrification enhanced by the development of natural fluvial morphology in agricultural headwater ditches? J N Am Benthol Soc 29:761–772. https://doi.org/10.1899/09-028.1
Article
Google Scholar
Powell GE, Ward AD, Mecklenburg DE, Jayakaran JD (2007) Two-stage channel systems: part 1, a practical approach for sizing agricultural ditches. J Soil Water Conserv 62:277–286
Google Scholar
R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Google Scholar
Randall GW, Mulla DJ (2001) Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. J Environ Qual 30:337–344
Article
Google Scholar
Reisinger AJ, Tank JL, Hoellein TJ, Hall RO Jr (2016) Sediment, water column, and open-channel denitrification in rivers measured using membrane-inlet mass spectrometry. J Geophys Res Biogeosci 121:1258–1274. https://doi.org/10.1002/2015JG003261
Article
Google Scholar
Rhoads BL, Herricks EE (1996) Naturalization of headwater streams in Illinois: challenges and possibilities. In: Brookes A, Shields FD Jr. (eds) River channel restoration: guiding principles for sustainable projects. Wiley, New York, pp 331–367
Google Scholar
Rhoads BL, Massey KD (2012) Flow structure and channel change in a sinuous grass-lined stream within an agricultural drainage ditch: implications for ditch stability and aquatic habitat. River Res Appl 28:39–52. https://doi.org/10.1002/rra.1430
Article
Google Scholar
Richardson WB, Strauss EA, Bartsch LA, Monroe EM, Cavanaugh JC, Vingum L, Soballe DM (2004) Denitrification in the Upper Mississippi River: rates, controls, and contribution to nitrate flux. Can J Fish Aquat Sci 61:1102–1112. https://doi.org/10.1139/F04-062
Article
Google Scholar
Roley SS, Tank JL, Stephen ML, Johnson LT, Beaulieu JJ, Witter JD (2012a) Floodplain restoration enhances denitrification and reach-scale nitrogen removal in an agricultural stream. Ecol Appl 22:281–297
Article
Google Scholar
Roley SS, Tank JL, Williams MA (2012b) Hydrologic connectivity increases denitrification in the hyporheic zone and restored floodplains of an agricultural stream. J Geophys Res. https://doi.org/10.1029/2012jg001950
Article
Google Scholar
Roley SS, Tank JL, Griffiths NA, Hall RO Jr, Davis RT (2014) The influence of floodplain restoration on whole-stream metabolism in an agricultural stream: insights from a 5-year continuous data set. Freshw Sci 33:1043–1059
Article
Google Scholar
Royer TV, Tank JL, David MB (2004) Transport and fate of nitrate in headwater agricultural streams in Illinois. J Environ Qual 33:1296–1304
Article
Google Scholar
Sheibley RW, Ahearn DS, Dahlgren RA (2006) Nitrate loss from a restored floodplain in the lower Cosumnes River, California. Hydrobiologia 571:261–272
Article
Google Scholar
Simon A (1989) A model of channel response in disturbed alluvial channels. Earth Surf Proc Land 14:11–26
Article
Google Scholar
Simon A, Hupp CR (1992) Geomorphic and vegetative recovery processes along modified stream channels of west Tennessee. US Geological Survey Open-File Report 91-502, Nashville, Tennessee
Simon A, Rinaldi M (2000) Channel instability in the Loess area of the Midwestern United States. J Am Water Resour Assoc 36:133–150
Article
Google Scholar
Sinha E, Michalak AM (2016) Precipitation dominates interannual variability of riverine nitrogen loading across the continental United States. Environ Sci Technol 50:12874–12884. https://doi.org/10.1021/acs.est.6b04455
Article
Google Scholar
Sinha E, Michalak AM, Balaji V (2017) Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357:405–408
Article
Google Scholar
Skaggs RW, Brevé MA, Gilliam JW (1994) Hydrologic and water quality impacts of agricultural drainage. Environ Sci Technol 24:1–32
Article
Google Scholar
Smith MS, Tiedje JM (1979) Phases of denitrification following oxygen depletion in soil. Soil Biol Biochem 11:261–267
Article
Google Scholar
Smith LK, Voytek MA, Bohlke JK, Harvey JW (2006) Denitrification in nitrate-rich streams: application of N2: Ar and 15N-tracer methods in intact cores. Ecol Appl 16:2191–2207
Article
Google Scholar
Solórzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14:799–801
Article
Google Scholar
Stelzer RS, Scott JT, Bartsch LA, Parr TB (2014) Particulate organic matter quality influences nitrate retention and denitrification in stream sediments: evidence from a carbon burial experiment. Biogeochemistry 119:387–402
Article
Google Scholar
Tiedje JM, Simkins S, Groffman PM (1989) Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. Plant Soil 115:261–284
Article
Google Scholar
Tockner K, Pennetzdorfer D, Reiner N, Schiemer F, Ward JV (1999) Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshw Biol 41:521–535
Article
Google Scholar
Tomer MD, Schilling KE (2009) A simple approach to distinguish land-use and climate-change effects on watershed hydrology. J Hydrol 376:24–33. https://doi.org/10.1016/j.jhdryol.2009.07.029
Article
Google Scholar
USDA (2017) Land values summary. National Agricultural Statistics Service, U.S. Department of Agriculture, Washington, DC
Google Scholar
Valett HM, Baker MA, Morrice JA, Crawford CS, Molles MC Jr, Dahm CN, Moyer DL, Thibault JR, Ellis LM (2005) Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain. Ecology 86:220–234
Article
Google Scholar
Vidon P, Hubbard LE, Soyeux E (2009) Seasonal solute dynamics across land uses during storms in glaciated landscape of the US Midwest. J Hydrol 376:34–47
Article
Google Scholar
Welsh MK, McMillan SK, Vidon PG (2017) Denitrification along the stream-riparian continuum in restored and unrestored agricultural streams. J Environ Qual. https://doi.org/10.2134/jeq2017.01.0006
Article
Google Scholar
Welti N, Bondar-Kunze E, Singer G, Tritthart M, Zechmeister-Boltenstern S, Hein T, Pinay G (2012) Large-scale controls on potential respiration and denitrification in riverine floodplains. Ecol Eng 42:73–84
Article
Google Scholar
Wolf KL, Noe GB, Ahn C (2013) Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands. J Environ Qual 42:1245–1255. https://doi.org/10.2134/jeq2012.0466
Article
Google Scholar
Zhai X, Piwpuan N, Arias CA, Headley T, Brix H (2013) Can root exudates from emergent wetland plants fuel denitrification in subsurface flow constructed wetland systems? Ecol Eng 61:555–563
Article
Google Scholar
Zucker LA, Brown LC (1998) Agricultural drainage: Water quality impacts and subsurface drainage studies in the Midwest. Bulletin. University of Minnesota Extension, St. Paul, Minn, pp 871–98