Advertisement

Biogeochemistry

, Volume 137, Issue 3, pp 297–306 | Cite as

Beyond clay: towards an improved set of variables for predicting soil organic matter content

  • Craig Rasmussen
  • Katherine Heckman
  • William R. Wieder
  • Marco Keiluweit
  • Corey R. Lawrence
  • Asmeret Asefaw Berhe
  • Joseph C. Blankinship
  • Susan E. Crow
  • Jennifer L. Druhan
  • Caitlin E. Hicks Pries
  • Erika Marin-Spiotta
  • Alain F. Plante
  • Christina Schädel
  • Joshua P. Schimel
  • Carlos A. Sierra
  • Aaron Thompson
  • Rota Wagai
Biogeochemistry Letters

Abstract

Improved quantification of the factors controlling soil organic matter (SOM) stabilization at continental to global scales is needed to inform projections of the largest actively cycling terrestrial carbon pool on Earth, and its response to environmental change. Biogeochemical models rely almost exclusively on clay content to modify rates of SOM turnover and fluxes of climate-active CO2 to the atmosphere. Emerging conceptual understanding, however, suggests other soil physicochemical properties may predict SOM stabilization better than clay content. We addressed this discrepancy by synthesizing data from over 5,500 soil profiles spanning continental scale environmental gradients. Here, we demonstrate that other physicochemical parameters are much stronger predictors of SOM content, with clay content having relatively little explanatory power. We show that exchangeable calcium strongly predicted SOM content in water-limited, alkaline soils, whereas with increasing moisture availability and acidity, iron- and aluminum-oxyhydroxides emerged as better predictors, demonstrating that the relative importance of SOM stabilization mechanisms scales with climate and acidity. These results highlight the urgent need to modify biogeochemical models to better reflect the role of soil physicochemical properties in SOM cycling.

Keywords

Soil organic matter Biogeochemistry Carbon cycle 

Notes

Acknowledgements

This work was conducted as a part of the “What Lies Below? Improving quantification and prediction of soil carbon storage, stability, and susceptibility to disturbance” Working Group supported by the John Wesley Powell Center for Analysis and Synthesis, funded by the U.S. Geological Survey. Additional support was provided by NSF EAR-1331408 and EAR- 1123454 to Rasmussen, NSF CAREER BCS-1349952 to Marin-Spiotta, US Department of Agriculture NIFA 2015-67003-23485 and US Department of Energy TES DE-SC0014374 to Wieder, and USDA-NIFA Hatch project HAW01130-H to Crow. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author Contributions

This work is the result of two workshops sponsored by the USGS John Wesley Powell Center for Analysis and Synthesis in May of 2016 and May of 2017. The motivation and ideas for this work were generated collaboratively among all authors during these workshops. Rasmussen led manuscript development, data compilation, and analysis. All authors contributed to writing/editing, statistical analyses, and figure development.

Supplementary material

10533_2018_424_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1825 kb)

References

  1. Amato M, Ladd JN (1992) Decomposition of C-14-labeled glucose and legume material in soils—properties influencing the accumulation of organic residue-c and microbial biomass-c. Soil Biol Biochem 24(5):455–464CrossRefGoogle Scholar
  2. Andrews DM, Lin H, Zhu Q, Jin LX, Brantley SL (2011) Hot spots and hot moments of dissolved organic carbon export and soil organic carbon storage in the shale hills catchment. Vadose Zone Journal 10(3):943–954CrossRefGoogle Scholar
  3. Asano M, Wagai R (2014) Evidence of aggregate hierarchy at micro- to submicron scales in an allophanic Andisol. Geoderma 216:62–74CrossRefGoogle Scholar
  4. Augustin C, Cihacek LJ (2016) Relationships between soil carbon and soil texture in the northern great plains. Soil Sci 181(8):386–392CrossRefGoogle Scholar
  5. Buol SW, Eswaran H (2000) Oxisols. In: Sparks DL (ed) Advances in agronomy, vol 68. Academic Press, San Diego, pp 151–195Google Scholar
  6. Buol SW, Southard RJ, Graham RC, McDaniel PA (2011) Soil genesis and classification. Wiley, HobokenCrossRefGoogle Scholar
  7. Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K, Schimel DS (1989) Texture, climate, and cultivation effects on soil organic-matter content in Us grassland soils. Soil Sci Soc Am J 53(3):800–805CrossRefGoogle Scholar
  8. Coleman D, Jenkinson DS (1996) RothC-26.3 - A model for the turnover of carbon in soil. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models : using existing long-term datasets. Springer, Berlin; New York, pp 237–246CrossRefGoogle Scholar
  9. Dahlgren RA, Saigusa M, Ugolini FC (2004) The nature, properties and management of volcanic soils. Adv Agron 82(82):113–182CrossRefGoogle Scholar
  10. Deng Y, Dixon JB (2002) Soil organic matter and organo-mineral interactions. In: Dixon JB, Schulze DG (eds) Soil Mineralogy with Environmental Applications. Soil Science Society of America, Madison, pp 69–108Google Scholar
  11. Doetterl S, Stevens A, Six J, Merckx R, Van Oost K, Pinto MC, Casanova-Katny A, Munoz C, Boudin M, Venegas EZ, Boeckx P (2015) Soil carbon storage controlled by interactions between geochemistry and climate. Nat Geosci 8(10): 780Google Scholar
  12. Douglas L (1989) Vermiculites. In: Dixon JB, Weed SB, Dinauer RC (eds) Minerals in soil environments. vol no 1. Soil Science Society of America, Madison, Wis., USA. p 635-674Google Scholar
  13. El Swaify SA (1980) Physical and mechanical properties of Oxisols. In: Theng BKG (ed) Soils with variable charge. New Zealand Society of Soil Science, Lower Hutt, pp 303–324Google Scholar
  14. Fierer N, Schimel JP (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34(6):777–787CrossRefGoogle Scholar
  15. Garrido E, Matus F (2012) Are organo-mineral complexes and allophane content determinant factors for the carbon level in Chilean volcanic soils? (vol 92C, pg 106, 2012). CATENA 95:184–184CrossRefGoogle Scholar
  16. Harsh J, Chorover J, Nizeyimana E (2002) Allophane and imogolite. In: Dixon JB, Schulze DG (eds) Soil Mineralogy with Environmental Applications. Soil Science Society of America, Madison, pp 291–322Google Scholar
  17. Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191(1):77–87CrossRefGoogle Scholar
  18. Hengl T, de Jesus JM, Heuvelink GBM, Gonzalez MR, Kilibarda M, Blagotic A, Shangguan W, Wright MN, Geng XY, Bauer-Marschallinger B, Guevara MA, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B (2017) SoilGrids250 m: Global gridded soil information based on machine learning. Plos One 12(2)Google Scholar
  19. Ito A, Wagai R (2017) Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies. Sci Data 4:Google Scholar
  20. Jobbagy EG, Jackson RB (2001) The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 53(1):51–77CrossRefGoogle Scholar
  21. Journet E, Balkanski Y, Harrison SP (2014) A new data set of soil mineralogy for dust-cycle modeling. Atmos Chem Phys 14(8):3801–3816CrossRefGoogle Scholar
  22. Kahle M, Kleber M, Jahn R (2003) Retention of dissolved organic matter by illitic soils and clay fractions: Influence of mineral phase properties. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 166(6):737–741CrossRefGoogle Scholar
  23. Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31(7–8):711–725CrossRefGoogle Scholar
  24. Kaiser K, Guggenberger G, Haumaier L, Zech W (1997) Dissolved organic matter sorption on subsoils and minerals studied by C-13-NMR and DRIFT spectroscopy. Eur J Soil Sci 48(2):301–310CrossRefGoogle Scholar
  25. Kittrick JA (1971) Montmorillonite Equilibria and Weathering Environment. Soil Sci Soc Am Pro 35(5):815–900CrossRefGoogle Scholar
  26. Kunhi Mouvenchery Y, Kucerik J, Diehl D, Schaumann GE (2012) Cation-mediated cross-linking in natural organic matter: a review. Rev Environ Sci Bio 11(1):41–54CrossRefGoogle Scholar
  27. Laird D (2001) Nature of clay-humic complexes in an agricultural soil: II. Scanning electron microscopy analysis. Soil Sci Soc Am J 65(5):1419–1425CrossRefGoogle Scholar
  28. Lawrence C, Harden J, Maher K (2014) Modeling the influence of organic acids on soil weathering. Geochim Cosmochim Acta 139:487–507CrossRefGoogle Scholar
  29. Lawrence CR, Harden JW, Xu XM, Schulz MS, Trumbore SE (2015) Long-term controls on soil organic carbon with depth and time: A case study from the Cowlitz River Chronosequence, WA USA. Geoderma 247:73–87CrossRefGoogle Scholar
  30. Mathieu JA, Hatte C, Balesdent J, Parent E (2015) Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles. Glob Change Biol 21(11):4278–4292CrossRefGoogle Scholar
  31. Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? Biogeochemistry 77(1):25–56CrossRefGoogle Scholar
  32. Mikutta R, Mikutta C, Kalbitz K, Scheel T, Kaiser K, Jahn R (2007) Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochim Cosmochim Acta 71(10):2569–2590CrossRefGoogle Scholar
  33. Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen ZS, Cheng K, Das BS, Field DJ, Gimona A, Hedley CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O’Rourke S, Richer-de-Forges AC, Odeh I, Padarian J, Paustian K, Pan GX, Poggio L, Savin I, Stolbovoy V, Stockmann U, Sulaeman Y, Tsui CC, Vagen TG, van Wesemael B, Winowiecki L (2017) Soil carbon 4 per mille. Geoderma 292:59–86CrossRefGoogle Scholar
  34. Muneer M, Oades JM (1989) The Role of Ca-Organic Interactions in Soil Aggregate Stability. 3. Mechanisms and Models. Aust J Soil Res 27(2):411–423CrossRefGoogle Scholar
  35. New M, Hulme M, Jones PD (1999) Representing twentieth century space-time climate variability. Part 1: development of a 1961–90 mean monthly terrestrial climatology. J Clim 12:829–856CrossRefGoogle Scholar
  36. Nichols JD (1984) Relation of organic-carbon to soil properties and climate in the southern great plains. Soil Sci Soc Am J 48(6):1382–1384CrossRefGoogle Scholar
  37. Oades JM (1988) The retention of organic-matter in soils. Biogeochemistry 5(1):35–70CrossRefGoogle Scholar
  38. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience 51(11):933–938CrossRefGoogle Scholar
  39. Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic-matter levels in great-plains grasslands. Soil Sci Soc Am J 51(5):1173–1179CrossRefGoogle Scholar
  40. Percival HJ, Parfitt RL, Scott NA (2000) Factors controlling soil carbon levels in New Zealand grasslands: Is clay content important? Soil Sci Soc Am J 64(5):1623–1630CrossRefGoogle Scholar
  41. Rasmussen C, Torn MS, Southard RJ (2005) Mineral assemblage and aggregates control carbon dynamics in a California conifer forest. Soil Sci Soc Am J 69(6):1711–1721CrossRefGoogle Scholar
  42. Rasmussen C, Southard RJ, Horwath WR (2006) Mineral control of organic carbon mineralization in a range of temperate conifer forest soils. Glob Change Biol 12(5):834–847CrossRefGoogle Scholar
  43. Schimel DS, Braswell BH, Holland EA, Mckeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem Cycles 8(3):279–293CrossRefGoogle Scholar
  44. Shoji S, Nanzyo M, Dahlgren R (1993) Volcanic ash soils—genesis, properties and utilization. Elsevier, AmsterdamGoogle Scholar
  45. Smith D, Cannon WF, Woodruff LG, Solano F, Ellefsen KJ (2014) Geochemical and mineralogical maps for soils of the conterminous United States. In: Survey USG (ed). U.S. Geological Survey. p 386Google Scholar
  46. Sposito G, Skipper NT, Sutton R, Park SH, Soper AK, Greathouse JA (1999) Surface geochemistry of the clay minerals. Proc Natl Acad Sci USA 96(7):3358–3364CrossRefGoogle Scholar
  47. Tiessen H, Salcedo IH, Sampaio EVSB (1992) Nutrient and Soil Organic-Matter Dynamics under Shifting Cultivation in Semiarid Northeastern Brazil. Agric Ecosyst Environ 38(3):139–151CrossRefGoogle Scholar
  48. Tiessen H, Cuevas E, Chacon P (1994) The Role of Soil Organic-Matter in Sustaining Soil Fertility. Nature 371(6500):783–785CrossRefGoogle Scholar
  49. Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389(6647):170–173CrossRefGoogle Scholar
  50. von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57(4):426–445CrossRefGoogle Scholar
  51. Wagai R, Mayer LM (2007) Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochim Cosmochim Acta 71(1):25–35CrossRefGoogle Scholar
  52. Wagner S, Cattle SR, Scholten T (2007) Soil-aggregate formation as influenced by clay content and organic-matter amendment. J Plant Nutr Soil Sci 170(1):173–180CrossRefGoogle Scholar
  53. Wieder WR, Grandy AS, Kallenbach CM, Taylor PG, Bonan GB (2015) Representing life in the Earth system with soil microbial functional traits in the MIMICS model. Geosci Model Dev 8(6):1789–1808CrossRefGoogle Scholar
  54. Wills SA, Burras CL, Sandor JA (2007) Prediction of soil organic carbon content using field and laboratory measurements of soil color. Soil Sci Soc Am J 71(2):380–388CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Craig Rasmussen
    • 1
  • Katherine Heckman
    • 2
  • William R. Wieder
    • 3
  • Marco Keiluweit
    • 4
  • Corey R. Lawrence
    • 5
  • Asmeret Asefaw Berhe
    • 6
  • Joseph C. Blankinship
    • 1
  • Susan E. Crow
    • 7
  • Jennifer L. Druhan
    • 8
  • Caitlin E. Hicks Pries
    • 9
  • Erika Marin-Spiotta
    • 10
  • Alain F. Plante
    • 11
  • Christina Schädel
    • 12
  • Joshua P. Schimel
    • 13
  • Carlos A. Sierra
    • 14
  • Aaron Thompson
    • 15
  • Rota Wagai
    • 16
  1. 1.Department of Soil, Water and Environmental ScienceThe University of ArizonaTucsonUSA
  2. 2.US Forest Service Northern Research StationHoughtonUSA
  3. 3.Climate and Global Dynamics Laboratory National Center for Atmospheric Research & Institute of Arctic and Alpine ResearchUniversity of Colorado, BoulderBoulderUSA
  4. 4.University of Massachusetts-AmherstAmherstUSA
  5. 5.U.S. Geological SurveyBoulderUSA
  6. 6.University of California, MercedMercedUSA
  7. 7.University of Hawaii ManoaHonoluluUSA
  8. 8.University of Illinois Urbana-ChampaignChampaignUSA
  9. 9.Dartmouth CollegeHanoverUSA
  10. 10.Department of GeographyUniversity of Wisconsin – MadisonMadisonUSA
  11. 11.University of PennsylvaniaPhiladelphiaUSA
  12. 12.Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffUSA
  13. 13.University of California – Santa BarbaraSanta BarbaraUSA
  14. 14.Max Planck Institute for BiogeochemistryJenaGermany
  15. 15.Department of Crop and Soil Science and the Odum School of EcologyUniversity of GeorgiaAthensUSA
  16. 16.National Agriculture and Food Research Organization, Institute for Agro-Environmental SciencesTsukubaJapan

Personalised recommendations