, Volume 136, Issue 1, pp 47–70 | Cite as

Organic matter distribution and retention along transects from hilltop to kettle hole within an agricultural landscape

  • Kai Nils NitzscheEmail author
  • Michael Kaiser
  • Katrin Premke
  • Arthur Gessler
  • Ruth Heike Ellerbrock
  • Carsten Hoffmann
  • Andreas Kleeberg
  • Zachary Eric KaylerEmail author


In agricultural landscapes, the spatio-temporal distribution of organic matter (OM) varies greatly across landscape structures and soil types. We investigated patterns of organic carbon (OC) content, polyvalent cations, and isotopic values for specific OM fractions along transects spanning topographic positions from erosional to depositional areas, including aquatic sediments within a single kettle hole. We hypothesized different drivers exist at different scales. At the transect scale, we hypothesized (1) landscape form and land management to explain patterns of isotopic and OC content from different OM fractions. At the aggregate scale, (2) we expected different OM-mineral associations to explain stabilized OM. We also hypothesized, (3) that shallow sediment δ13C and δ15N of the kettle hole reflected different terrestrial sources. We found that distinct differences in the OM turnover rates existed between the fractions suggesting that different processes are affecting the transformation rates that are recorded in the isotopic composition patterns. Erosion along with plant productivity drive mineral-associated fractions over the transect, while microbial decomposition and slurry influence freely available and aggregated OM fractions. The type and magnitude of OM-mineral associations changed along the transect while binding OM of different decomposition status. OM in mineral-associated fractions in kettle hole sediments were derived from clay- and silt-sized particles from the field, whereas OM in freely available and aggregated fractions potentially originated from macrophytes. We conclude that kettle holes constitute important sinks for terrestrial OM across the landscape.


Stable isotopes Erosion Soil organic matter Organo-mineral interaction Land management Depressional wetland 



We thank Frau Remus, Dr. Sara Herrero Martín, and Ruben Yague for their help with the sample preparation and isotope analysis. We thank Kristina Holz and her team from the Central Laboratory at ZALF for measurements of the soil chemical characteristics as well as Michael Facklam from the Technische Universität Berlin for soil textural analysis. We also thank Renee Ende for support with OM fractionation. We kindly thank the LandScales team for their support and discussions. This research was funded through the Pact for Innovation and Research of the Gottfried Wilhelm Leibniz association (project LandScales—‘Connecting processes and structures driving landscape carbon dynamics over scales’). Finally, we thank two anonymous reviewers for their constructive comments, which have improved this manuscript.


  1. Amelung W, Zech W (1999) Minimisation of organic matter disruption during particle-size fractionation of grassland epipedons. Geoderma 92:73–85. doi: 10.1016/S0016-7061(99)00023-3 CrossRefGoogle Scholar
  2. Balesdent J, Besnard E, Arrouays D, Chenu C (1998) The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence. Plant Soil 201:49–57. doi: 10.1023/A:1004337314970 CrossRefGoogle Scholar
  3. Bateman AS, Kelly SD, Jickells TD (2005) Nitrogen isotope relationships between crops and fertilizer: implications for using nitrogen isotope analysis as an indicator of agricultural regime. J Agric Food Chem 53:5760–5765. doi: 10.1021/jf050374h CrossRefGoogle Scholar
  4. Bayerl G (2006) Geschichte der Landnutzung in der Region Barnim-Uckermark. Materialien der Interdisziplinären Arbeitsgruppe Zukunftsorientierte Nutzung ländlicher Räume—Land Innovation Nr. 12., Berlin-Brandenburgische Akademie der Wissenschaften, BerlinGoogle Scholar
  5. Berhe AA, Harte J, Harden JW, Torn MS (2007) The significance of the erosion-induced terrestrial carbon sink. Bioscience 57:337–346. doi: 10.1641/B570408 CrossRefGoogle Scholar
  6. Berhe AA, Harden JW, Torn MS, Harte J (2008) Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions. J Geophys Res Biogeosci 113:G04039. doi: 10.1029/2008JG000751 CrossRefGoogle Scholar
  7. Berhe AA, Harden JW, Torn MS et al (2012) Persistence of soil organic matter in eroding versus depositional landform positions. J Geophys Res Biogeosci 117:G02019. doi: 10.1029/2011JG001790 CrossRefGoogle Scholar
  8. Bremner JM, Lees H (1949) Studies on soil organic matter: Part II. The extraction of organic matter from soil by neutral reagents. J Agric Sci 39:274–279. doi: 10.1017/S0021859600004214 CrossRefGoogle Scholar
  9. Bremner JM, Heintze SG, Mann PJG, Lees H (1946) Metallo-organic complexes in Soil. Nature 158:790–791. doi: 10.1038/158790b0 CrossRefGoogle Scholar
  10. Brüggemann N, Gessler A, Kayler Z et al (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8:3457–3489. doi: 10.5194/bg-8-3457-2011 CrossRefGoogle Scholar
  11. Choi W-J, Ro H-M, Hobbie EA (2003) Patterns of natural 15N in soils and plants from chemically and organically fertilized uplands. Soil Biol Biochem 35:1493–1500. doi: 10.1016/S0038-0717(03)00246-3 CrossRefGoogle Scholar
  12. Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press, New YorkGoogle Scholar
  13. Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184. doi: 10.1007/s10021-006-9013-8 CrossRefGoogle Scholar
  14. Conrad O, Bechtel B, Bock M et al (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007. doi: 10.5194/gmd-8-1991-2015 CrossRefGoogle Scholar
  15. Deumlich D, Schmidt R, Sommer M (2010) A multiscale soil-landform relationship in the glacial-drift area based on digital terrain analysis and soil attributes. J Plant Nutr Soil Sci 173:843–851. doi: 10.1002/jpln.200900094 CrossRefGoogle Scholar
  16. Dijkstra P, LaViolette CM, Coyle JS et al (2008) 15N enrichment as an integrator of the effects of C and N on microbial metabolism and ecosystem function. Ecol Lett 11:389–397. doi: 10.1111/j.1461-0248.2008.01154.x CrossRefGoogle Scholar
  17. DIN 19684–6 (1997) Methods of soil investigations for agricultural engineering—chemical laboratory tests—Part 6: determination of iron soluble in oxalate solution. Beuth Verlag, BerlinGoogle Scholar
  18. DIN ISO 10390 (1997) Soil quality—determination of pH (ISO 10390:2005). Beuth Verlag, BerlinGoogle Scholar
  19. DIN ISO 10694 (1995) Soil quality—determination of organic and total carbon after dry combustion (elementary analysis). Beuth Verlag, BerlinGoogle Scholar
  20. DIN ISO 11260 (1994) Soil quality—determination of effective cation exchange capacity and base saturation level using barium chloride solution (ISO 11260:2011). Beuth Verlag, BerlinGoogle Scholar
  21. DIN ISO 11277 (2002) Soil quality—determination of particle size distribution in mineral soil material—method by sieving and sedimentation (ISO 11277:2009). Beuth Verlag, BerlinGoogle Scholar
  22. Doetterl S, Cornelis JT, Six J et al (2015) Soil redistribution and weathering controlling the fate of geochemical and physical carbon stabilization mechanisms in soils of an eroding landscape. Biogeosciences 12:1357–1371. doi: 10.5194/bg-12-1357-2015 CrossRefGoogle Scholar
  23. Doetterl S, Berhe AA, Nadeu E et al (2016) Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Sci Rev 154:102–122. doi: 10.1016/j.earscirev.2015.12.005 CrossRefGoogle Scholar
  24. Dungait JAJ, Ghee C, Rowan JS et al (2013) Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biol Biochem 60:195–201. doi: 10.1016/j.soilbio.2013.01.027 CrossRefGoogle Scholar
  25. Ellerbrock RH, Gerke HH, Deumlich D (2016) Soil organic matter composition along a slope in an erosion-affected arable landscape in North East Germany. Soil Tillage Res 156:209–218. doi: 10.1016/j.still.2015.08.014 CrossRefGoogle Scholar
  26. Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837. doi:10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2Google Scholar
  27. Fry B (2006) Stable isotope ecology. Springer, New YorkCrossRefGoogle Scholar
  28. Gerke HH, Rieckh H, Sommer M (2016) Interactions between crop, water, and dissolved organic and inorganic carbon in a hummocky landscape with erosion-affected pedogenesis. Soil Tillage Res 156:230–244. doi: 10.1016/j.still.2015.09.003 CrossRefGoogle Scholar
  29. Gregorich EG, Beare MH, Stoklas U, St-Georges P (2003) Biodegradability of soluble organic matter in maize-cropped soils. Geoderma 113:237–252. doi: 10.1016/S0016-7061(02)00363-4 CrossRefGoogle Scholar
  30. Harden JW, Sharpe JM, Parton WJ et al (1999) Dynamic replacement and loss of soil carbon on eroding cropland. Global Biogeochem Cycles 13:885–901. doi: 10.1029/1999GB900061 CrossRefGoogle Scholar
  31. Harris D, Horwáth WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J 65:1853–1856. doi: 10.2136/sssaj2001.1853 CrossRefGoogle Scholar
  32. Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative sysnthesis. Mar Chem 49:137–139. doi: 10.1016/0304-4203(95)00008-F CrossRefGoogle Scholar
  33. Hedges JI, Oades JM (1997) Comparative organic geochemisties of soils and marine sediments. Org Geochem 27:319–361. doi: 10.1016/S0146-6380(97)00056-9 CrossRefGoogle Scholar
  34. Hu Y, Berhe AA, Fogel ML et al (2016) Transport-distance specific SOC distribution: Does it skew erosion induced C fluxes? Biogeochemistry 128:339–351. doi: 10.1007/s10533-016-0211-y CrossRefGoogle Scholar
  35. Kaiser K, Guggenberger G, Zech W (2001) Isotopic fractionation of dissolved organic carbon in shallow forest soils as affected by sorption. Eur J Soil Sci 52:585–597. doi: 10.1046/j.1365-2389.2001.00407.x CrossRefGoogle Scholar
  36. Kaiser K, Mikutta R, Guggenberger G (2007) Increased stability of organic matter sorbed to ferrihydrite and goethite on aging. Soil Sci Soc Am J 71:711–719. doi: 10.2136/sssaj2006.0189 CrossRefGoogle Scholar
  37. Kaiser M, Ellerbrock RH, Sommer M (2009) Separation of coarse organic particles from bulk surface soil samples by electrostatic attraction. Soil Sci Soc Am J 73:2118–2130. doi: 10.2136/sssaj2009.0046 CrossRefGoogle Scholar
  38. Kaiser M, Wirth S, Ellerbrock RH, Sommer M (2010) Microbial respiration activities related to sequentially separated, particulate and water-soluble organic matter fractions from arable and forest topsoils. Soil Biol Biochem 42:418–428. doi: 10.1016/j.soilbio.2009.11.018 CrossRefGoogle Scholar
  39. Kaiser M, Ellerbrock RH, Wulf M et al (2012) The influence of mineral characteristics on organic matter content, composition, and stability of topsoils under long-term arable and forest land use. J Geophys Res Biogeosci 117:G02018. doi: 10.1029/2011JG001712 Google Scholar
  40. Kaiser M, Zederer DP, Ellerbrock RH et al (2016) Effects of mineral characteristics on content, composition, and stability of organic matter fractions separated from seven forest topsoils of different pedogenesis. Geoderma 263:1–7. doi: 10.1016/j.geoderma.2015.08.029 CrossRefGoogle Scholar
  41. Kalettka T, Rudat C (2006) Hydrogeomorphic types of glacially created kettle holes in North-East Germany. Limnologica 36:54–64. doi: 10.1016/j.limno.2005.11.001 CrossRefGoogle Scholar
  42. Kayler ZE, Kaiser M, Gessler A et al (2011) Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms. Biogeosciences 8:2895–2906. doi: 10.5194/bg-8-2895-2011 CrossRefGoogle Scholar
  43. Keil RG, Tsamakis E, Fuh CB et al (1994) Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionation. Geochim Cosmochim Acta 58:879–893. doi: 10.1016/0016-7037(94)90512-6 CrossRefGoogle Scholar
  44. Keiluweit M, Bougoure JJ, Nico PS et al (2015) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5:588–595. doi: 10.1038/nclimate2580 CrossRefGoogle Scholar
  45. Kirkels FMSA, Cammeraat LH, Kuhn NJ (2014) The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes—a review of different concepts. Geomorphology 226:94–105. doi: 10.1016/j.geomorph.2014.07.023 CrossRefGoogle Scholar
  46. Kleber M, Eusterhues K, Keiluweit M et al (2015) Mineral-organic associations: formation, properties, and relevance in soil environments. Adv Agron 130:1–140. doi: 10.1016/bs.agron.2014.10.005 CrossRefGoogle Scholar
  47. Kleeberg A, Neyen M, Schkade U-K et al (2016) Sediment cores from kettle holes in NE Germany reveal recent impacts of agriculture. Environ Sci Pollut Res 23:7409–7424. doi: 10.1007/s11356-015-5989-y CrossRefGoogle Scholar
  48. Kuznetsova A, Brockhoff PB, Christensen RHB (2016) lmerTest: tests in linear mixed effects modelsGoogle Scholar
  49. Lalonde K, Mucci A, Ouellet A, Gélinas Y (2012) Preservation of organic matter in sediments promoted by iron. Nature 483:198–200. doi: 10.1038/nature10855 CrossRefGoogle Scholar
  50. Liu F, Zhang G-L, Sun Y-J et al (2013) Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape. Soil Sci Soc Am J 77:1241–1253. doi: 10.2136/sssaj2012.0317 CrossRefGoogle Scholar
  51. Lloyd CEM, Michaelides K, Chadwick DR et al (2016) Runoff- and erosion-driven transport of cattle slurry: linking molecular tracers to hydrological processes. Biogeosciences 13:551–566. doi: 10.5194/bg-13-551-2016 CrossRefGoogle Scholar
  52. Masiello CA, Chadwick OA, Southon J et al (2004) Weathering controls on mechanisms of carbon storage in grassland soils. Global Biogeochem Cycles 18:GB4023. doi: 10.1029/2004GB002219 CrossRefGoogle Scholar
  53. Mayer LM (1994) Surface area control of organic carbon accumulation in continental shelf sediments. Geochim Cosmochim Acta 58:1271–1284. doi: 10.1016/0016-7037(94)90381-6 CrossRefGoogle Scholar
  54. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302. doi: 10.1016/0009-2541(94)90059-0 CrossRefGoogle Scholar
  55. Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56. doi: 10.1007/s10533-005-0712-6 CrossRefGoogle Scholar
  56. Mikutta R, Mikutta C, Kalbitz K et al (2007) Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochim Cosmochim Acta 71:2569–2590. doi: 10.1016/j.gca.2007.03.002 CrossRefGoogle Scholar
  57. Moni C, Derrien D, Hatton P-J et al (2012) Density fractions versus size separates: does physical fractionation isolate functional soil compartments? Biogeosciences 9:5181–5197. doi: 10.5194/bg-9-5181-2012 CrossRefGoogle Scholar
  58. Mouvenchery YK, Kučerík J, Diehl D, Schaumann GE (2012) Cation-mediated cross-linking in natural organic matter: a review. Rev Environ Sci Biotechnol 11:41–54. doi: 10.1007/s11157-011-9258-3 CrossRefGoogle Scholar
  59. Nitzsche KN, Verch G, Premke K et al (2016) Visualizing land-use and management complexity within biogeochemical cycles of an agricultural landscape. Ecosphere 7:e01282. doi: 10.1002/ecs2.1282 CrossRefGoogle Scholar
  60. Nitzsche KN, Kalettka T, Premke K et al (2017) Land-use and hydroperiod affect kettle hole sediment carbon and nitrogen biogeochemistry. Sci Total Environ 574:46–56. doi: 10.1016/j.scitotenv.2016.09.003 CrossRefGoogle Scholar
  61. Pennock DJ, van Kessel C, Farrell RE, Sutherland RA (1992) Landscape-scale variations in denitrification. Soil Sci Soc Am J 56:770–776. doi: 10.2136/sssaj1992.03615995005600030016x CrossRefGoogle Scholar
  62. Premke K, Attermeyer K, Augustin J et al (2016) The importance of landscape complexity for carbon fluxes on the landscape level: small-scale heterogeneity matters. WIREs Water. doi: 10.1002/wat2.1147 Google Scholar
  63. Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi: 10.1007/s11104-004-0907-y CrossRefGoogle Scholar
  64. Schlichting E, Blume H-P, Stahr K (1995) Bodenkundliches Praktikum. Blackwell, BerlinGoogle Scholar
  65. Schrumpf M, Kaiser K (2015) Large differences in estimates of soil organic carbon turnover in density fractions by using single and repeated radiocarbon inventories. Geoderma 239–240:168–178. doi: 10.1016/j.geoderma.2014.09.025 CrossRefGoogle Scholar
  66. Senbayram M, Dixon L, Goulding KWT, Bol R (2008) Long-term influence of manure and mineral nitrogen applications on plant and soil 15N and 13C values from the Broadbalk Wheat Experimenty. Rapid Commun Mass Spectrom 22:1735–1740. doi: 10.1002/rcm.3548 CrossRefGoogle Scholar
  67. Sollins P, Kramer MG, Swanston C et al (2009) Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry 96:209–231. doi: 10.1007/s10533-009-9359-z CrossRefGoogle Scholar
  68. Stallard RF (1998) Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochem Cycles 12:231–257. doi: 10.1029/98GB00741 CrossRefGoogle Scholar
  69. Sutherland RA, van Kessel C, Farrell RE, Pennock DJ (1993) Landscape-scale variations in plant and soil nitrogen-15 natural abundance. Soil Sci Soc Am J 57:169–178. doi: 10.2136/sssaj1993.03615995005700010031x CrossRefGoogle Scholar
  70. Thompson A, Rancourt DG, Chadwick OA, Chorover J (2011) Iron solid-phase differentiation along a redox gradient in basaltic soils. Geochim Cosmochim Acta 75:119–133. doi: 10.1016/j.gca.2010.10.005 CrossRefGoogle Scholar
  71. von Lützow MV, Kögel-Knabner I, Ekschmitt K et al (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445. doi: 10.1111/j.1365-2389.2006.00809.x CrossRefGoogle Scholar
  72. Wagai R, Mayer LM, Kitayama K, Shirato Y (2013) Association of organic matter with iron and aluminum across a range of soils determined via selective dissolution techniques coupled with dissolved nitrogen analysis. Biogeochemistry 112:95–109. doi: 10.1007/s10533-011-9652-5 CrossRefGoogle Scholar
  73. Wattel-Koekkoek EJW, Buurman P, Van Der Plicht J et al (2003) Mean residence time of soil organic matter associated with kaolinite and smectite. Eur J Soil Sci 54:269–278. doi: 10.1046/j.1365-2389.2003.00512.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kai Nils Nitzsche
    • 1
    • 11
    Email author
  • Michael Kaiser
    • 2
  • Katrin Premke
    • 1
    • 3
  • Arthur Gessler
    • 1
    • 4
    • 5
  • Ruth Heike Ellerbrock
    • 6
  • Carsten Hoffmann
    • 6
    • 7
  • Andreas Kleeberg
    • 8
  • Zachary Eric Kayler
    • 1
    • 9
    • 10
    Email author
  1. 1.Leibniz Centre for Agricultural Landscape Research (ZALF)Institute of Landscape BiogeochemistryMuenchebergGermany
  2. 2.Department of Environmental ChemistryUniversity of KasselWitzenhausenGermany
  3. 3.Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Chemical Analytic and BiogeochemistryBerlinGermany
  4. 4.Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
  5. 5.Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
  6. 6.Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Soil Landscape ResearchMuenchebergGermany
  7. 7.Leibniz Centre for Agricultural Landscape Research (ZALF), Agricultural Landscape Data CentreMuenchebergGermany
  8. 8.State Laboratory Berlin-BrandenburgDepartment Geology, Soil, WasteKleinmachnowGermany
  9. 9.Lawrence Livermore National LaboratoryCenter for Accelerator Mass SpectrometryLivermoreUSA
  10. 10.Department of Soil and Water SystemsUniversity of IdahoMoscowUSA
  11. 11.Research Institute for Humanity and Nature (RIHN)KyotoJapan

Personalised recommendations