Are elusive anaerobic pathways key methane sinks in eutrophic lakes and reservoirs?

Abstract

Collectively, freshwaters constitute a significant source of methane to the atmosphere, and both methane production and methane oxidation can strongly influence net emissions. Anaerobic methane oxidation (AOM) is recognized as a strong regulator of marine methane emissions and appreciation of AOM’s importance in freshwater is growing. In spite of this renewed interest, recent work and reactive-transport modeling results we present in this paper point to unresolved pathways for AOM. Comparison of recent observations from a eutrophic reservoir, Lacamas Lake, with predictions of a 1D steady-state model of water column methane dynamics indicates that high rates of methane oxidation measured via bottle assays cannot be explained with conventional electron acceptors (O2, NO2 , NO3 , SO4 2−, Mn4+, and Fe3+). Reactive-transport modeling suggests that solute oxidant concentrations at the thermocline would have to be around 10 times higher than observed to explain the measured methane consumption. Organic acids—a major constituent of organic matter—may account for part of this unexplained AOM given their abundance in eutrophic systems, although the details of these pathways remain elusive (e.g., which species are involved, seasonal renewal of reduced species, contribution of particulate versus dissolved phases). We point to several observations consistent with organic acid-mediated AOM, both in Lacamas Lake and in other systems. Nevertheless, direct evidence of this pathway is still lacking and testing for this remains an important direction for future work. To this end, we identify several new avenues of research that would help quantify the role of organic acid-mediated AOM relative to other electron acceptors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bastviken D, Cole JJ, Pace ML, Van de Bogert MC (2008) Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J Geophys Res 113. doi: 10.1029/2007JG000608

  2. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50. doi:10.1126/science.1196808

    Article  Google Scholar 

  3. Blees J, Niemann H, Wenk CB et al (2014) Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland). Limnol Oceanogr 59:311–324. doi:10.4319/lo.2014.59.2.0311

    Article  Google Scholar 

  4. Blodau C, Deppe M (2012) Humic acid addition lowers methane release in peats of the Mer Bleue bog, Canada. Soil Biol Biochem 52:96–98. doi:10.1016/j.soilbio.2012.04.023

    Article  Google Scholar 

  5. Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel J-P, Peyret P, Fonty G, Lehours A-C (2011) Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 162:832–847. doi:10.1016/j.resmic.2011.06.004

    Article  Google Scholar 

  6. Canfield DE, Stewart FJ, Thamdrup B, Brabandere LD, Dalsgaard T, Delong EF, Revsbech NP, Ulloa O (2010) A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330:1375–1378. doi:10.1126/science.1196889

    Article  Google Scholar 

  7. Carlson K, Geiger NS, Waltz T, Grant M, Luzier J, Anglin D, Hough G (1985) Lacamas-Round Lake diagnostic and restoration analysis. Project D2925. Project D2925 Intergovernmental Resource Center

  8. Cervantes FJ, van der Velde S, Lettinga G, Field JA (2000) Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia. FEMS Microbiol Ecol 34:161–171

    Article  Google Scholar 

  9. Ciais P, Sabine G, Bala G et al (2013). Carbon and other biogeochemical cycles, In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press

  10. Crowe SA, Katsev S, Leslie K et al (2011) The methane cycle in ferruginous Lake Matano. Geobiology 9:61–78. doi:10.1111/j.1472-4669.2010.00257.x

    Article  Google Scholar 

  11. Deemer BR, Harrison JA, Whitling EW (2011) Microbial dinitrogen and nitrous oxide production in a small eutrophic reservoir: an in situ approach to quantifying hypolimnetic process rates. Limnol Oceanogr 56:1189–1199. doi:10.4319/lo.2011.56.4.1189

    Article  Google Scholar 

  12. Dick JM (2008) Calculation of the relative metastabilities of proteins using the CHNOSZ software package. Geochem Trans 9:10. doi:10.1186/1467-4866-9-10

    Article  Google Scholar 

  13. Egger M, Rasigraf O, Sapart CJ et al (2015) Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ Sci Technol 49:277–283. doi:10.1021/es503663z

    Article  Google Scholar 

  14. Eller G, Kanel L, Kruger M (2005) Co-occurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plu see. Appl Environ Microbiol 71:8925–8928. doi:10.1128/AEM.71.12.8925-8928.2005

    Article  Google Scholar 

  15. Ettwig KF, Butler MK, Le Paslier D et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548. doi:10.1038/nature08883

    Article  Google Scholar 

  16. Fimmen RL, Cory RM, Chin Y-P, Trouts TD, McKnight DM (2007) Probing the oxidation–reduction properties of terrestrially and microbially derived dissolved organic matter. Geochim Cosmochim Acta 71:3003–3015. doi:10.1016/j.gca.2007.04.009

    Article  Google Scholar 

  17. Heitmann T, Blodau C (2006) Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem Geol 235:12–20. doi:10.1016/j.chemgeo.2006.05.011

    Article  Google Scholar 

  18. Heitmann T, Goldhammer T, Beer J, Blodau C (2007) Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog. Glob Change Biol 13:1771–1785. doi:10.1111/j.1365-2486.2007.01382.x

    Article  Google Scholar 

  19. Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, Van Weering TCE (eds) Ocean margin systems. Springer, New york, pp 457–477

    Google Scholar 

  20. Itoh M, Kobayashi Y, Chen T-Y et al (2015) Effect of interannual variation in winter vertical mixing on CH4 dynamics in a subtropical reservoir. J Geophys Res Biogeosci 120:1246–1261. doi:10.1002/2015JG002972

    Article  Google Scholar 

  21. Iversen N, Oremland RS, Klug MJ (1987) Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation. Limnol Ocean 32:804–808

    Article  Google Scholar 

  22. Kankaala P, Huotari J, Peltomaa E, Saloranta T, Ojala A (2006) Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol Oceanogr 51:1195–1204. doi:10.4319/lo.2006.51.2.1195

    Article  Google Scholar 

  23. Kappler A, Benz M, Schink B, Brune A (2004) Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol Ecol 47:85–92. doi:10.1016/S0168-6496(03)00245-9

    Article  Google Scholar 

  24. Katsev S, Crowe SA, Mucci A, Sundby B, Nomosatryo S, Douglas Haffner G, Fowle DA (2010) Mixing and its effects on biogeochemistry in the persistently stratified, deep, tropical Lake Matano, Indonesia. Limnol Oceanogr 55:763

    Article  Google Scholar 

  25. Keller JK, Weisenhorn PB, Megonigal JP (2009) Humic acids as electron acceptors in wetland decomposition. Soil Biol Biochem 41:1518–1522. doi:10.1016/j.soilbio.2009.04.008

    Article  Google Scholar 

  26. Kellerman AM, Kothawala DN, Dittmar T, Tranvik LJ (2015) Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nat Geosci 8:454–457. doi:10.1038/ngeo2440

    Article  Google Scholar 

  27. Klüpfel L, Piepenbrock A, Kappler A, Sander M (2014) Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat Geosci 7:195–200. doi:10.1038/ngeo2084

    Article  Google Scholar 

  28. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334. doi:10.1146/annurev.micro.61.080706.093130

    Article  Google Scholar 

  29. Kojima H, Tokizawa R, Kogure K, Kobayashi Y, Itoh M, Shiah F-K, Okuda N, Fukui M (2014) Community structure of planktonic methane-oxidizing bacteria in a subtropical reservoir characterized by dominance of phylotype closely related to nitrite reducer. Sci Rep 4. doi:10.1038/srep05728

  30. Lennon JT, Hamilton SK, Muscarella ME, Grandy AS, Wickings K, Jones SE (2013) A source of terrestrial organic carbon to investigate the browning of aquatic ecosystems. PLoS ONE 8:e75771. doi:10.1371/journal.pone.0075771

    Article  Google Scholar 

  31. Lipson DA, Jha M, Raab TK, Oechel WC (2010) Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. J Geophys Res 115. doi:10.1029/2009JG001147

  32. Lopes F, Viollier E, Thiam A et al (2011) Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Appl Geochem 26:1919–1932. doi:10.1016/j.apgeochem.2011.06.021

    Article  Google Scholar 

  33. Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  Google Scholar 

  34. Martinez CM, Alvarez LH, Celis LB, Cervantes FJ (2013) Humus-reducing microorganisms and their valuable contribution in environmental processes. Appl Microbiol Biotechnol 97:10293–10308. doi:10.1007/s00253-013-5350-7

    Article  Google Scholar 

  35. Miller LG, Sasson C, Oremland RS (1998) Difluoromethane, a new and improved inhibitor of methanotrophy. Appl Environ Microbiol 64:4357–4362

    Google Scholar 

  36. Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, Kuypers MM, Schubert CJ (2015) Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J 9:1991–2002. doi:10.1038/ismej.2015.12

    Article  Google Scholar 

  37. Myhre G, Shindell D, Bréon F-M et al (2013) Anthropogenic and natural radiative forcing. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press

  38. Nauhaus K, Treude T, Boetius A, Kruger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol 7:98–106. doi:10.1111/j.1462-2920.2004.00669.x

    Article  Google Scholar 

  39. Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, Kuypers MMM, Schubert CJ (2016) Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters: methane oxidation in Lake Zug. Oceanogr, Limnol. doi:10.1002/lno.10312

    Google Scholar 

  40. Panganiban AT, Patt TE, Hart W, Hanson RS (1979) Oxidation of methane in the absence of oxygen in lake water samples. Appl Environ Microbiol 37:303–309

    Google Scholar 

  41. Perdue EM, Ritchie JD (2003) Dissolved organic matter in freshwaters. Treatise Geochem 5:605

    Google Scholar 

  42. Pimenov NV, Kallistova AY, Rusanov II et al (2010) Methane formation and oxidation in the meromictic oligotrophic Lake Gek-Gel (Azerbaijan). Microbiology 79:247–252. doi:10.1134/S0026261710020177

    Article  Google Scholar 

  43. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513. doi:10.1021/cr050362v

    Article  Google Scholar 

  44. Salas de León DA, Alcocer J, Ardiles Gloria V, Quiroz-Martínez B (2016) Estimation of the eddy diffusivity coefficient in a warm monomictic tropical Lake. J Limnol 75. doi:10.4081/jlimnol.2016.1431

  45. Saxton MA, Samarkin VA, Schutte CA, Bowles MW, Madigan MT, Cadieux SB, Pratt LM, Joye SB (2016) Biogeochemical and 16S rRNA gene sequence evidence supports a novel mode of anaerobic methanotrophy in permanently ice-covered Lake Fryxell. Antarctica Limnol Oceanogr 61:119–130. doi:10.1002/lno.10320

    Article  Google Scholar 

  46. Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351:703–707

    Article  Google Scholar 

  47. Schubert CJ, Lucas FS, Durisch-Kaiser E, Stierli R, Diem T, Scheidegger O, Vazquez F, Müller B (2010) Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquat Sci 72:455–466. doi:10.1007/s00027-010-0148-5

    Article  Google Scholar 

  48. Segarra KEA, Comerford C, Slaughter J, Joye SB (2013) Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochim Cosmochim Acta 115:15–30. doi:10.1016/j.gca.2013.03.029

    Article  Google Scholar 

  49. Segarra KEA, Schubotz F, Samarkin V, Yoshinaga MY, Hinrichs K-U, Joye SB (2015) High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nat Commun 6:7477. doi:10.1038/ncomms8477

    Article  Google Scholar 

  50. Smemo KA, Yavitt JB (2011) Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 8:779–793. doi:10.5194/bg-8-779-2011

    Article  Google Scholar 

  51. Soetaert K, Herman PMJ (2009) A practical guide to ecological modelling: using R as a simulation platform. Springer, New York

    Google Scholar 

  52. Soetaert K, Meysman F (2012) Reactive transport in aquatic ecosystems: rapid model prototyping in the open source software R. Environ Model Softw 32:49–60. doi:10.1016/j.envsoft.2011.08.011

    Article  Google Scholar 

  53. Stolper DA, Revsbech NP, Canfield DE (2010) Aerobic growth at nanomolar oxygen concentrations. Proc Natl Acad Sci 107:18755–18760

    Article  Google Scholar 

  54. Uchimiya M, Stone AT (2009) Reversible redox chemistry of quinones: impact on biogeochemical cycles. Chemosphere 77:451–458. doi:10.1016/j.chemosphere.2009.07.025

    Article  Google Scholar 

  55. Valenzuela EI, Prieto-Davó A, López-Lozano NE et al (2017) Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Appl Environ Microbiol AEM.00645-17. doi:10.1128/AEM.00645-17

  56. Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8:347–359. doi:10.1016/0304-4203(80)90024-9

    Article  Google Scholar 

  57. Wik M, Varner RK, Anthony KW, MacIntyre S, Bastviken D (2016) Climate-sensitive northern lakes and ponds are critical components of methane release. Nat Geosci 9:99–105. doi:10.1038/ngeo2578

    Article  Google Scholar 

  58. Yoshinaga MY, Holler T, Goldhammer T et al (2014) Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane. Nat Geosci 7:190–194. doi:10.1038/ngeo2069

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Keith Birchfield for assistance with data organization, field, and lab work. We also appreciate helpful input from Anna Withington and Jason Keller in the early stages of paper development. Finally, we thank Marc Kramer for helpful feedback and comments on a draft version of this manuscript. Financial support for this work was provided by GEF/UNESCO-4500226031, USACE-IWR and NSF DEB1355211 to Harrison.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bridget R. Deemer.

Additional information

Responsible Editor: Kate Lajtha.

Daniel C. Reed and Bridget R. Deemer—share first authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 622 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reed, D.C., Deemer, B.R., van Grinsven, S. et al. Are elusive anaerobic pathways key methane sinks in eutrophic lakes and reservoirs?. Biogeochemistry 134, 29–39 (2017). https://doi.org/10.1007/s10533-017-0356-3

Download citation

Keywords

  • Anaerobic
  • AQDS
  • Lake
  • Methane oxidation
  • Organic acids
  • Reactive transport modeling