Skip to main content

Advertisement

Log in

Redox and temperature-sensitive changes in microbial communities and soil chemistry dictate greenhouse gas loss from thawed permafrost

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Greenhouse gas (GHG) emissions from thawed permafrost are difficult to predict because they result from complex interactions between abiotic drivers and multiple, often competing, microbial metabolic processes. Our objective was to characterize mechanisms controlling methane (CH4) and carbon dioxide (CO2) production from permafrost. We simulated permafrost thaw for the length of one growing season (90 days) in oxic and anoxic treatments at 1 and 15 °C to stimulate aerobic and anaerobic respiration. We measured headspace CH4 and CO2 concentrations, as well as soil chemical and biological parameters (e.g. dissolved organic carbon (DOC) chemistry, microbial enzyme activity, N2O production, bacterial community structure), and applied an information theoretic approach and the Akaike information criterion to find the best explanation for mechanisms controlling GHG flux. In addition to temperature and redox status, CH4 production was explained by the relative abundance of methanogens, activity of non-methanogenic anaerobes, and substrate chemistry. Carbon dioxide production was explained by microbial community structure and chemistry of the DOC pool. We suggest that models of permafrost CO2 production are refined by a holistic view of the system, where the prokaryote community structure and detailed chemistry are considered. In contrast, although CH4 production is the result of many syntrophic interactions, these actions can be aggregated into a linear approach, where there is a single path of organic matter degradation and multiple conditions must be satisfied in order for methanogenesis to occur. This concept advances our mechanistic understanding of the processes governing anaerobic GHG flux, which is critical to understanding the impact the release of permafrost C will have on the global C cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GHG:

Greenhouse gas

CH4 :

Methane

CO2 :

Carbon dioxide

DOC:

Dissolved organic carbon

IT:

Information theoretic

AICc:

Akaike information criterion

C:

Carbon

ESM:

Earth systems models

FTIR:

Fourier transformed mid-infrared spectroscopy

PCoA:

Principle coordinates analysis

ANOSIM:

Analysis of similarity

PCA:

Principle components analysis

MBC:

Microbial biomass carbon

References

  • Allison SD (2012) A trait-based approach for modelling microbial litter decomposition. Ecol Lett 15:1058–1070. doi:10.1111/j.1461-0248.2012.01807.x

    Article  Google Scholar 

  • Andersen SK, White DM (2006) Determining soil organic matter quality under anaerobic conditions in arctic and subarctic soils. Cold Reg Sci Technol 44:149–158. doi:10.1016/j.coldregions.2005.11.001

    Article  Google Scholar 

  • Anisimov OA (2007) Potential feedback of thawing permafrost to the global climate system through methane emission. Environ Res Lett. doi:10.1088/1748-9326/2/4/045016

    Google Scholar 

  • Artz RR, Chapman SJ, Campbell CD (2006) Substrate utilisation profiles of microbial communities in peat are depth dependent and correlate with whole soil FTIR profiles. Soil Biol Biochem 38:2958–2962. doi:10.1016/j.soilbio.2006.04.017

    Article  Google Scholar 

  • Bell CW, Fricks BE, Rocca JD et al (2013) High-throughput fluorometric measurement of potential soil extracellular enzyme activities. JoVE. doi:10.3791/50961

    Google Scholar 

  • Blake LI, Tveit A, Øvreås L et al (2015) Response of methanogens in arctic sediments to temperature and methanogenic substrate availability. PLoS ONE 10:e0129733. doi:10.1371/journal.pone.0129733

    Article  Google Scholar 

  • Bollag JM, Czlonkowski ST (1973) Inhibition of methane formation in soil by various nitrogen-containing compounds. Soil Biol Biochem 5:673–678. doi:10.1016/0038-0717(73)90057-6

    Article  Google Scholar 

  • Borden PW, Ping C-L, McCarthy PJ, Naidu S (2010) Clay mineralogy in arctic tundra Gelisols, northern Alaska. Soil Sci Soc Am J 74:580–592. doi:10.2136/sssaj2009.0187

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2003) Model selection and multimodel inference: a practical information-theoretic approach. pp 1–515

  • Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. In: Proceedings of the National Academy of Sciences, vol 108 (Suppl 1), pp 4516–4522. doi:10.1073/pnas.1000080107

  • Cavanaugh JE (1997) Unifying the derivations for the Akaike and corrected Akaike information criteria. Stat Prob Lett 33:201–208

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2017) PRIMER v7, 3rd edn. Plymouth

  • Cleveland CC, Reed SC, Keller AB et al (2013) Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174:283–294. doi:10.1007/s00442-013-2758-9

    Article  Google Scholar 

  • Coolen M, Orsi WD (2015) The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front Microbiol 1–14. doi:10.3389/fmicb.2015.00197

  • Coolen MJL, van de Giessen J, Zhu EY, Wuchter C (2011) Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Environ Microbiol 13:2299–2314. doi:10.1111/j.1462-2920.2011.02489.x

    Article  Google Scholar 

  • Cotrufo MF, Soong JL, Horton AJ et al (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–779. doi:10.1038/ngeo2520

    Article  Google Scholar 

  • Dai XY, White D, Ping CL (2002) Comparing bioavailability in five Arctic soils by pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrol 62:249–258

    Article  Google Scholar 

  • Darrouzet-Nardi A, Weintraub MN (2014) Evidence for spatially inaccessible labile N from a comparison of soil core extractions and soil pore water lysimetry. Soil Biol Biochem 73:22–32. doi:10.1016/j.soilbio.2014.02.010

    Article  Google Scholar 

  • DeForest JL, Smemo KA, Burke DJ, Elliott HL (2012) Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests. Biogeochemistry. doi:10.1007/s10533-011-9619-6

    Google Scholar 

  • DeLaune RD, Reddy KR (2005) Redox potential. Encycl Soils Environ 3:366–371

    Article  Google Scholar 

  • Drake HL, Horn MA, Wüst PK (2009) Intermediary ecosystem metabolism as a main driver of methanogenesis in acidic wetland soil. Environ Microbiol 1:307–318. doi:10.1111/j.1758-2229.2009.00050.x

    Article  Google Scholar 

  • Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Glob Change Biol 12:2336–2351. doi:10.1111/j.1365-2486.2006.01259.x

    Article  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461

    Article  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi:10.1038/nmeth.2604

    Article  Google Scholar 

  • Elberling B, Michelsen A, Schädel C et al (2013) Long-term CO2 production following permafrost thaw. Nat Clim Change 3:890–894. doi:10.1038/nclimate1955

    Article  Google Scholar 

  • Ernakovich JG, Wallenstein MD, Calderón FJ (2015) Chemical indicators of cryoturbation and microbial processing throughout an Alaskan permafrost soil depth profile. Soil Sci Soc Am J 79:783–793. doi:10.2136/sssaj2014.10.0420

    Article  Google Scholar 

  • Fierer N, Schimel JP (2003) A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67:798–805

    Article  Google Scholar 

  • Frank-Fahle BA, Yergeau E, Greer CW et al (2014) Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic. PLoS ONE 9:e84761. doi:10.1371/journal.pone.0084761

    Article  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymic “latch” on a global carbon store—a shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature 409:149. doi:10.1038/35051650

    Article  Google Scholar 

  • Ganzert L, Jurgens G, Münster U, Wagner D (2007) Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59:476–488. doi:10.1111/j.1574-6941.2006.00205.x

    Article  Google Scholar 

  • Graham EB, Knelman JE, Schindlbacher A (2016) Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol 1–10. doi:10.3389/fmicb.2016.00214

  • Groffman PM, Butterbach-Bahl K, Fulweiler RW et al (2009) Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93:49–77. doi:10.1007/s10533-008-9277-5

    Article  Google Scholar 

  • Haberhauer G, Gerzabek MH (1999) Drift and transmission FT-IR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter. Vib Spectrosc 19:413–417. doi:10.1016/S0924-2031(98)00046-0

    Article  Google Scholar 

  • Haberhauer G, Rafferty B, Strebl F, Gerzabek MH (1998) Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy. Geoderma 83:331–342. doi:10.1016/S0016-7061(98)00008-1

    Article  Google Scholar 

  • Harden JW, Koven CD, Ping C-L et al (2012) Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys Res Lett 39:1–6. doi:10.1029/2012GL051958

    Article  Google Scholar 

  • Hodgkins SB, Tfaily MM, McCalley CK et al (2014) Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc Natl Acad Sci USA 111:5819–5824. doi:10.1073/pnas.1314641111

    Article  Google Scholar 

  • Höfle S, Rethemeyer J, Mueller CW, John S (2013) Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta. Biogeosciences 10:3145–3158. doi:10.5194/bg-10-3145-2013

    Article  Google Scholar 

  • Høj L, Rusten M, Haugen LE, Olsen RA (2006) Effects of water regime on archaeal community composition in Arctic soils. Environ Microbiol. doi:10.1111/j.1462-2920.2005.00982.x

    Google Scholar 

  • Hugelius G, Strauss J, Zubrzycki S, Harden JW (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences. doi:10.5194/bg-11-6573-2014

    Google Scholar 

  • Hultman J, Waldrop MP, Mackelprang R et al (2015) Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature. doi:10.1038/nature14238

    Google Scholar 

  • Hurvich CM, Tsai CL (1989) Regression and time-series model selection in small samples. Biometrika 76:297–307. doi:10.1016/S0167-7152(96)00128-9

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovern-mental panel on climate change. Cambridge University Press, Cambridge, 1535 pp

  • Knoblauch C, Beer C, Sosnin A et al (2013) Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob Change Biol 19:1160–1172. doi:10.1111/gcb.12116

    Article  Google Scholar 

  • Kotsyurbenko OR (2005) Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems. FEMS Microbiol Ecol 53:3–13. doi:10.1016/j.femsec.2004.12.009

    Article  Google Scholar 

  • Koven C, Friedlingstein P, Ciais P et al (2009) On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model. Geophys Res Lett 36:L21501–L21505. doi:10.1029/2009GL040150

    Article  Google Scholar 

  • Koven CD, Ringeval B, Friedlingstein P et al (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proc Natl Acad Sci USA 108:14769–14774. doi:10.1073/pnas.1103910108

    Article  Google Scholar 

  • Koven CD, Schuur E, Schädel C (2015) A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. R Soc A. doi:10.1098/rsta.2014.0423

    Google Scholar 

  • Koyama A, Wallenstein MD, Simpson RT, Moore JC (2013) Carbon-degrading enzyme activities stimulated by increased nutrient availability in arctic tundra soils. PLoS ONE 8:e77212–e77213. doi:10.1371/journal.pone.0077212

    Article  Google Scholar 

  • Lawrence DM, Slater AG, Romanovsky VE, Nicolsky DJ (2008) Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J Geophys Res 113:F02011–F02014. doi:10.1029/2007JF000883

    Google Scholar 

  • Lawrence DM, Koven CD, Swenson SC et al (2015) Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ Res Lett 10:094011–094012. doi:10.1088/1748-9326/10/9/094011

    Article  Google Scholar 

  • Lee H, Schuur EAG, Inglett KS et al (2012) The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Glob Change Biol 18:515–527. doi:10.1111/j.1365-2486.2011.02519.x

    Article  Google Scholar 

  • Lipson DA, Zona D, Raab TK et al (2012) Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem. Biogeosciences 9:577–591. doi:10.5194/bg-9-577-2012

    Article  Google Scholar 

  • Lovley DR, Phillips EJP (1987) Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl Environ Microbiol 53:2636–2641

    Google Scholar 

  • Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585. doi:10.1128/AEM.01996-06

    Article  Google Scholar 

  • Lupascu M, Wadham JL, Hornibrook ERC, Pancost RD (2012) Temperature sensitivity of methane production in the permafrost active layer at Stordalen, Sweden: a comparison with non-permafrost Northern Wetlands. Arct Antarct Alp Res 44:469–482. doi:10.1657/1938-4246-44.4.469

    Article  Google Scholar 

  • MacDougall AH, Avis CA, Weaver AJ (2012) Significant contribution to climate warming from the permafrost carbon feedback. Nat Geosci 5:719–721. doi:10.1038/ngeo1573

    Article  Google Scholar 

  • Mackelprang R, Waldrop MP, DeAngelis KM et al (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–371. doi:10.1038/nature10576

    Article  Google Scholar 

  • McCalley CK, Woodcroft Ben J, Hodgkins SB et al (2014) Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514:478–481. doi:10.1038/nature13798

    Article  Google Scholar 

  • McDonald D, Price MN, Goodrich J et al (2011) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. doi:10.1038/ismej.2011.139

    Article  Google Scholar 

  • McGuire AD, Koven C, Lawrence DM (2016) Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochem Cycles. doi:10.1002/(ISSN)1944-9224

    Google Scholar 

  • McInerney MJ (1988) Anaerobic hydrolysis and fermentation of fats and proteins. In: Zehnder AJB (ed) Biology of Anaerobic Microorganisms. Wiley, New York, pp 373–415

    Google Scholar 

  • Megonigal JP, Hines ME, Visscher PT (2003) 8.08 anaerobic metabolism: linkages to trace gases and aerobic processes. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier-Pergamon, Oxford, pp 317–424

    Chapter  Google Scholar 

  • Melle C, Wallenstein M, Darrouzet-Nardi A, Weintraub MN (2015) Microbial activity is not always limited by nitrogen in Arctic tundra soils. Soil Biol Biochem 90:52–61. doi:10.1016/j.soilbio.2015.07.023

    Article  Google Scholar 

  • Mondav R, Woodcroft Ben J, Kim E-H et al (2014) Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun 5:1–7. doi:10.1038/ncomms4212

    Article  Google Scholar 

  • Movasaghi Z, Rehman S, ur Rehman DI (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43:134–179. doi:10.1080/05704920701829043

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72:242–253. doi:10.2307/1938918

    Article  Google Scholar 

  • Parikh SJ, Goyne KW, Margenot AJ et al (2014) Soil chemical insights provided through vibrational spectroscopy. Elsevier, Oxford, pp 1–148

    Google Scholar 

  • Peters V, Conrad R (1996) Sequential reduction processes and initiation of CH 4 production upon flooding of oxic upland soils. Soil Biol Biochem 28:371–382. doi:10.1016/0038-0717(95)00146-8

    Article  Google Scholar 

  • Ping CL, Jastrow JD, Jorgenson MT et al (2015) Permafrost soils and carbon cycling. Soil 1:147–171. doi:10.5194/soil-1-147-2015

    Article  Google Scholar 

  • Reed DC, Algar CK, Huber JA, Dick GJ (2014) Gene-centric approach to integrating environmental genomics and biogeochemical models. Proc Natl Acad Sci USA 111:1879–1884. doi:10.1073/pnas.1313713111

    Article  Google Scholar 

  • Riley WJ, Subin ZM, Lawrence DM et al (2011) Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences 8:1925–1953. doi:10.5194/bg-8-1925-2011

    Article  Google Scholar 

  • Rivkina E, Shcherbakova V, Laurinavichius K et al (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61:1–15. doi:10.1111/j.1574-6941.2007.00315.x

    Article  Google Scholar 

  • Santruckova H, Bird MI, Kalaschnikov YN et al (2003) Microbial characteristics of soils on a latitudinal transect in Siberia. Glob Change Biol 9:1106–1117. doi:10.1046/j.1365-2486.2003.00596.x

    Article  Google Scholar 

  • Schädel C, Bader MKF, Schuur EAG et al (2016) Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat Clim Change. doi:10.1038/nclimate3054

    Google Scholar 

  • Schaedel C, Schuur EAG, Bracho R et al (2014) Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob Change Biol 20:641–652. doi:10.1111/gcb.12417

    Article  Google Scholar 

  • Schnecker J, Wild B, Hofhansl F et al (2014) Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils. PLoS ONE 9:e94076. doi:10.1371/journal.pone.0094076

    Article  Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG et al (2008) Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience 58:701–714. doi:10.1641/B580807

    Article  Google Scholar 

  • Schuur EAG, McGuire AD, Schädel C et al (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179. doi:10.1038/nature14338

    Article  Google Scholar 

  • Sistla SA, Rastetter EB, Schimel JP (2014) Responses of a tundra system to warming using SCAMPS: a stoichiometrically coupled, acclimating microbe-plant-soil model. Ecol Monogr 84:151–170. doi:10.1890/12-2119.1

    Article  Google Scholar 

  • Sjögersten S, Caul S, Daniell TJ et al (2016) Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands. Soil Biol Biochem 98:42–53. doi:10.1016/j.soilbio.2016.03.016

    Article  Google Scholar 

  • Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture (2015) Soil Survey Geographic (SSURGO) Database. https://sdmdataaccess.sc.egov.usda.gov. Accessed 9 Sept 2015

  • Stephens PA, Buskirk SW, Hayward GD, Martinez del Rio C (2005) Information theory and hypothesis testing: a call for pluralism. J Appl Ecol 42:4–12. doi:10.1111/j.1365-2664.2005.01002.x

    Article  Google Scholar 

  • Swenson SC, Lawrence DM (2012) Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model. J Adv Model Earth Syst. doi:10.1029/2012MS000165

    Google Scholar 

  • Tang JY, Riley WJ (2013) A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition. Biogeosciences. doi:10.5194/bg-10-8329-2013

    Google Scholar 

  • Tarnocai C (1993) Sampling frozen soils. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, pp 755–765

    Google Scholar 

  • Tarnocai C, Canadell JG, Schuur E (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles. doi:10.1029/2008GB003327

    Google Scholar 

  • Treat CC, Natali SM, Ernakovich J et al (2015) A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Glob Change Biol 21:2787–2803. doi:10.1111/gcb.12875

    Article  Google Scholar 

  • Trivedi P, Anderson IC, Singh BK (2013) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21:641–651. doi:10.1016/j.tim.2013.09.005

    Article  Google Scholar 

  • Tveit AT, Urich T, Frenzel P, Svenning MM (2015) Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci USA 112:E2507–E2516. doi:10.1073/pnas.1420797112

    Article  Google Scholar 

  • van Hees PAW, Jones DL, Finlay R et al (2005) The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol Biochem 37:1–13. doi:10.1016/j.soilbio.2004.06.010

    Article  Google Scholar 

  • Vaughan DG, Comiso JC, Allison I, et al (2013) Observations: cryosphere. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK, University Press and New York, NY, USA, 1535 p

  • Wachinger G, Fiedler S, Zepp K et al (2000) Variability of soil methane production on the micro-scale: spatial association with hot spots of organic material and Archaeal populations. Soil Biol Biochem 32:1121–1130

    Article  Google Scholar 

  • Wagner D, Gattinger A, Embacher A et al (2007) Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget. Glob Change Biol 13:1089–1099. doi:10.1111/j.1365-2486.2007.01331.x

    Article  Google Scholar 

  • Waldrop MP, Wickland KP, White RI et al (2010) Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Glob Change Biol 16:2543–2554. doi:10.1111/j.1365-2486.2009.02141.x

    Google Scholar 

  • Wallenstein MD, Burns RG (2011) Ecology of extracellular enzyme activities and organic matter degradation in soil: a complex community-driven process. In: Methods of soil enzymology. Soil Science Society of America, pp 1–22

  • Wallenstein MD, McMahon SK, Schimel JP (2009) Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Glob Change Biol 15:1631–1639. doi:10.1111/j.1365-2486.2008.01819.x

    Article  Google Scholar 

  • Werner JJ, Koren O, Hugenholtz P et al (2011) Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J 6:94–103. doi:10.1038/ismej.2011.82

    Article  Google Scholar 

  • Westermann P, Ahring BK (1987) Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp. Appl Environ Microbiol 53:2554–2559

    Google Scholar 

  • Wieder WR, Grandy AS, Kallenbach CM et al (2015) Representing life in the Earth system with soil microbial functional traits in the MIMICS model. Geosci Model Dev 8:1789–1808. doi:10.5194/gmd-8-1789-2015

    Article  Google Scholar 

  • Wild B, Gentsch N, Čapek P et al (2016) Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils. Sci Rep. doi:10.1038/srep25607

    Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2009) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi:10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgements

Jessica Ernakovich was funded by generous support from the National Science Foundation (Graduate Research Fellowship Program and Doctoral Dissertation Improvement Grant) and the Department of Energy Global Change Education Program Fellowship. Matthew Wallenstein was supported by Award Number 0902030 from the National Science Foundation Office of Polar Programs and an NSF CAREER Award (#1255228). This material is also based upon work supported by the U.S. Department of Energy, Office of Science, Office of Terrestrial Ecosystem Science, Award Number DE-SC0010568. Many thanks to Rachel Paige and Claire Freeman for assistance with laboratory measures, and to Guy Beresford for the preparation of molecular libraries. Early discussions with J. Megan Steinweg, Sarah Evans and Joe vonFisher had a significant impact on the direction of this work. We would also like to thank the three anonymous reviewers and the editor for the time taken during review, as their comments significantly improved the manuscript.

Disclaimer

The use of trade, firm, or corporation names is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica G. Ernakovich.

Additional information

Responsible Editor: E. Matzner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 793 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ernakovich, J.G., Lynch, L.M., Brewer, P.E. et al. Redox and temperature-sensitive changes in microbial communities and soil chemistry dictate greenhouse gas loss from thawed permafrost. Biogeochemistry 134, 183–200 (2017). https://doi.org/10.1007/s10533-017-0354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0354-5

Keywords

Navigation