Skip to main content

Quantifying the contribution of land use to N2O, NO and CO2 fluxes in a montane forest ecosystem of Kenya

Abstract

Increasing demand for food and fibre by the growing human population is driving significant land use (LU) change from forest into intensively managed land systems in tropical areas. But empirical evidence on the extent to which such changes affect the soil-atmosphere exchange of trace gases is still scarce, especially in Africa. We investigated the effect of LU on soil trace gas production in the Mau Forest Complex region, Kenya. Intact soil cores were taken from natural forest, commercial and smallholder tea plantations, eucalyptus plantations and grazing lands, and were incubated in the lab under different soil moisture conditions. Soil fluxes of nitrous oxide (N2O), nitric oxide (NO) and carbon dioxide (CO2) were quantified, and we approximated annual estimates of soil N2O and NO fluxes using soil moisture values measured in situ. Forest and eucalyptus plantations yielded annual fluxes of 0.3–1.3 kg N2O–N ha−1 a−1 and 1.5–5.2 kg NO–N ha−1 a−1. Soils of commercial tea plantations, which are highly fertilized, showed higher fluxes (0.9 kg N2O–N ha−1 a−1 and 4.3 kg NO–N ha−1 a−1) than smallholder tea plantations (0.1 kg N2O–N ha−1 a−1 and 2.1 kg NO–N ha−1 a−1) or grazing land (0.1 kg N2O–N ha−1 a−1 and 1.1 kg NO–N ha−1 a−1). High soil NO fluxes were probably the consequence of long-term N fertilization and associated soil acidification, likely promoting chemodenitrification. Our experimental approach can be implemented in understudied regions, with the potential to increase the amount of information on production and consumption of trace gases from soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Akiyama H, Yan X, Yagi K (2006) Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data. Soil Sci Plant Nutr 52:774–787. doi:10.1111/j.1747-0765.2006.00097.x

    Article  Google Scholar 

  • Arai S, Ishizuka S, Ohta S et al (2008) Potential N2O emissions from leguminous tree plantation soils in the humid tropics. Global Biogeochem Cycles 22:1–9. doi:10.1029/2007GB002965

    Article  Google Scholar 

  • Arias-Navarro C, Díaz-Pinés E, Klatt S et al (2017) Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical mountain forest in Kenya. J Geophys Res Biogeosci 122:514–527. doi:10.1002/2016JG003667

    Article  Google Scholar 

  • Blackie JR, Edwards KA (1979) General conclusions from the land use experiments in East Africa. East Afr Agric For J 43:273–277. doi:10.1080/00128325.1979.11662968

    Google Scholar 

  • Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Chang Biol 15:808–824. doi:10.1111/j.1365-2486.2008.01681.x

    Article  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochem Cycles. doi:10.1029/2001GB001811

    Google Scholar 

  • Breuer L, Papen H, Butterbach-Bahl K (2000) N2O emission from tropical forest soils of Australia. J Geophys Res 105:26353. doi:10.1029/2000JD900424

    Article  Google Scholar 

  • Breuer L, Kiese R, Butterbach-Bahl K (2002) Temperature and moisture effects on nitrification rates in tropical rain-forest soils. Soil Sci Soc Am J 66:834. doi:10.2136/sssaj2002.8340

    Article  Google Scholar 

  • Brumme R (1995) Mechanisms of carbon and nutrient release and retention in beech forest gaps. Plant Soil 2:593–600

    Article  Google Scholar 

  • Butterbach-Bahl K, Kock M, Willibald G et al (2004) Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4 in a tropical rain forest ecosystem. Global Biogeochem Cycles. doi:10.1029/2004gb002243

    Google Scholar 

  • Butterbach-Bahl K, Kahl M, Mykhayliv L et al (2009) A European-wide inventory of soil NO emissions using the biogeochemical models DNDC/Forest-DNDC. Atmos Environ 43:1392–1402. doi:10.1016/j.atmosenv.2008.02.008

    Article  Google Scholar 

  • Butterbach-Bahl K, Baggs E, Dannenmann M et al (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B Biol Sci 368:20130122. doi:10.1098/rstb.2013.0122

    Article  Google Scholar 

  • Castaldi S, Bertolini T, Valente A et al (2013) Nitrous oxide emissions from soil of an African rain forest in Ghana. Biogeosci Discuss 9:16565–16588. doi:10.5194/bgd-9-16565-2012

    Article  Google Scholar 

  • Chameides WL, Fehsenfeld F, Rodgers MO et al (1992) Ozone precursor relationships in the ambient atmosphere. J Geophys Res 97:6037. doi:10.1029/91JD03014

    Article  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    Google Scholar 

  • Davidson EA (1992) Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci Soc Am J 56:95–102. doi:10.2136/sssaj1992.03615995005600010015x

    Article  Google Scholar 

  • Davidson EA, Kingerlee W (1997) A global inventory of nitric oxide emissions from soils. Nutr Cycl Agroecosystems 48:37–50. doi:10.1023/A:1009738715891

    Article  Google Scholar 

  • Davidson EA, Verchot LV (2000) Testing the hole in the pipe model of nitric and nitrous oxide emission from soils using the TRAGNET database. Global Biogeochem Cycles 14:1035–1042

    Article  Google Scholar 

  • Davidson EA, Vitousek PM, Riley R et al (1991) Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico. J Geophys Res Atmos. doi:10.1029/91JD01476

    Google Scholar 

  • Davidson EA, Keller M, Erickson HE et al (2000a) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50:667. doi:10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2

    Article  Google Scholar 

  • Davidson EA, Verchot LV, Cattanio JH, Ackerman IL (2000b) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69. doi:10.1023/A:1006204113917

    Article  Google Scholar 

  • Farquharson R, Baldock J (2008) Concepts in modelling N2O emissions from land use. Plant Soil 309:147–167. doi:10.1007/s11104-007-9485-0

    Article  Google Scholar 

  • Fu XQ, Li Y, Su WJ et al (2012) Annual dynamics of N2O emissions from a tea field in southern subtropical China. Plant, Soil Environ 58:373–378

    Article  Google Scholar 

  • Garcia-Montiel DC, Steudler PA, Piccolo MC et al (2001) Controls on soil nitrogen oxide emissions from forests and pastures in the Brazilian Amazon. Global Biogeochem Cycles 15:1021–1030

    Article  Google Scholar 

  • Garcia-Montiel DC, Steudler PA, Piccolo M et al (2003) Nitrogen oxide emissions following wetting of dry soils in forest and pastures in Rondônia, Brazil. Biogeochemistry 64:319–336. doi:10.1023/A:1024968802018

    Article  Google Scholar 

  • Gharahi Ghehi N, Werner C, Hufkens K et al (2014) N2O and NO emission from the Nyungwe tropical highland rainforest in Rwanda. Geoderma Reg 2–3:41–49. doi:10.1016/j.geodrs.2014.09.008

    Article  Google Scholar 

  • Government of Kenya (2010) Rehabilitation of the Mau Forest Ecosystem. A project concept prepared by the Interim Coordinating Secretariat, Office of the Prime Minister, on behalf of the Government of Kenya

  • Gut A, Van Dijk SM, Scheibe M et al (2002) NO emission from an Amazonian rain forest soil: continuous measurements of NO flux and soil concentration. J Geophys Res D Atmos 107:1–10. doi:10.1029/2001JD000521

    Google Scholar 

  • Gütlein A, Zistl-Schlingmann M, Becker JN et al (2016) Nitrogen turnover and greenhouse gas emissions in a tropical alpine ecosystem, Mt. Kilimanjaro, Tanzania. Plant Soil. doi:10.1007/s11104-016-3029-4

    Google Scholar 

  • Han W, Xu J, Wei K et al (2013) Estimation of N2O emission from tea garden soils, their adjacent vegetable garden and forest soils in eastern China. Environ Earth Sci 70:2495–2500. doi:10.1007/s12665-013-2292-4

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Geneva.

  • IPCC (2014) Climate Change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Geneva.

  • Ishizuka S, Tsuruta H, Murdiyarso D (2002) An intensive field study on CO2, CH4, and N2O emissions from soils at four land-use types in Sumatra, Indonesia. Global Biogeochem Cycles. doi:10.1029/2001GB001614

    Google Scholar 

  • IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. Rome

  • Jaetzold R, Schmidt H, Hornetz B, Shisanya C (2010) Farm management handbook of Kenya Part II/B. In: Farm management handbook of Kenya, 2nd ed. Ministry of Agriculture, Kenya, in Cooperation with the German Agency for Technical Cooperation (GTZ), Nairobi, p 739

  • Johansson C, Rodhe H, Sanhueza E (1988) Emission of NO in a tropical savanna and a cloud forest during the dry season. J Geophys Res Res 93:7180–7192

    Article  Google Scholar 

  • Kahle D, Wickham H (2013) ggmap: Spatial visualization with ggplot2. R J 5:144–161. doi:10.1023/A:1009843930701

    Google Scholar 

  • Keller M, Reiners WA (1994) Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Global Biogeochem Cycles 8:399–409. doi:10.1029/94GB01660

    Article  Google Scholar 

  • Keller M, Veldkamp E, Weitz AM, Reiners WA (1993) Effect of pasture age on soil trace-gas emissions from a deforested area of Costa Rica. Nature 365:244–246

    Article  Google Scholar 

  • Kenya Human Rights Commision (KHRC) (2008) A comparative study of the tea sector in Kenya. A case study of large scale tea estates. http://resource.khrc.or.ke:8181/khrc/handle/123456789/15?show=full

  • Kesik M, Blagodatsky S, Papen H, Butterbach-Bahl K (2006) Effect of pH, temperature and substrate on N2O, NO and CO2 production by Alcaligenes faecalis p. J Appl Microbiol 101:655–667. doi:10.1111/j.1365-2672.2006.02927.x

    Article  Google Scholar 

  • Kim D-G, Thomas AD, Pelster D et al (2016) Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further research. Biogeosciences 13:4789–4809. doi:10.5194/bg-13-4789-2016

    Article  Google Scholar 

  • Koehler B, Corre MD, Veldkamp E et al (2009) Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input. Glob Chang Biol 15:2049–2066. doi:10.1111/j.1365-2486.2008.01826.x

    Article  Google Scholar 

  • Krhoda GO (1988) The impact of resource utilization on the hydrology of the Mau Hills forest in Kenya. Mt Res Dev 8:193–200. doi:10.2307/3673447

    Article  Google Scholar 

  • Li C, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Clim Change 72:321–338. doi:10.1007/s10584-005-6791-5

    Article  Google Scholar 

  • Li Y, Fu X, Liu X et al (2013) Spatial variability and distribution of N2O emissions from a tea field during the dry season in subtropical central China. Geoderma 193:1–12. doi:10.1016/j.geoderma.2012.10.008

    Article  Google Scholar 

  • Liang LL, Grantz DA, Jenerette GD (2015) Multivariate regulation of soil CO2 and N2O pulse emissions from agricultural soils. Glob Chang Biol . doi:10.1111/gcb.13130

    Google Scholar 

  • Ludwig J, Meixner FX, Vogel B, Forstner J (2001) Soil-air exchange of nitric oxide: an overview of processes, environmental factors, and modeling studies. Biogeochemistry 52:225–257. doi:10.1023/a:1006424330555

    Article  Google Scholar 

  • Matson PA, Vitousek PM, Livingston GP, Swanberg NA (1990) Sources of variation in nitrous oxide flux from Amazonian ecosystems. J Geophys Res 95:16789. doi:10.1029/JD095iD10p16789

    Article  Google Scholar 

  • Medinets S, Skiba U, Rennenberg H, Butterbach-Bahl K (2015) A review of soil NO transformation: associated processes and possible physiological significance on organisms. Soil Biol Biochem 80:92–117. doi:10.1016/j.soilbio.2014.09.025

    Article  Google Scholar 

  • Melillo JM, Steudler PA, Feigl BJ et al (2001) Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon. J Geophys Res 106:179–188

    Article  Google Scholar 

  • Milder J, Moroge M, Shames S (2015) Operationalizing climate-smart agricultural landscapes: the case of a tea- producing landscape in Kericho, Kenya. In: Minang PA, van Noordwijk M, Freeman OE et al (eds) Climate-smart landscapes: multifunctionality in practice. World Agroforestry Centre (ICRAF), Nairobi, pp 319–333

    Google Scholar 

  • Monroy L, Mulinge W, Witwer M (2013) Analysis of incentives and disincentives for tea in Kenya. Technical notes series

  • Müller AK, Matson AL, Corre MD, Veldkamp E (2015) Soil N2O fluxes along an elevation gradient of tropical montane forests under experimental nitrogen and phosphorus addition. Front Earth Sci 3:1–12. doi:10.3389/feart.2015.00066

    Article  Google Scholar 

  • Mutugi M, Kiiru W (2015) Biodiversity, local resource, national heritage, regional concern, and global impact: the case of Mau Forest, Kenya. Eur Sci J 1:681–692

    Google Scholar 

  • Neff JC, Keller M, Holland EA et al (1995) Fluxes of nitric oxide from soils following the clearing and burning of a secondary tropical rain forest. J Geophys Res 100:25913. doi:10.1029/95JD02027

    Article  Google Scholar 

  • Nobre AD, Keller M, Crill PM, Harriss RC (2001) Short-term nitrous oxide profile dynamics and emissions response to water, nitrogen and carbon additions in two tropical soils. Biol Fertil Soils 34:363–373. doi:10.1007/s003740100396

    Article  Google Scholar 

  • Nottingham AT, Turner BL, Whitaker J et al (2015) Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences 12:6071–6083. doi:10.5194/bg-12-6071-2015

    Article  Google Scholar 

  • Omumbo JA, Lyon B, Waweru SM et al (2011) Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate. Malar J 10:12. doi:10.1186/1475-2875-10-12

    Article  Google Scholar 

  • Otter LB, Yang WX, Scholes MC, Meixner FX (1999) Nitric oxide emissions from a southern African savanna. J Geophys Res Atmos 104:18471–18485. doi:10.1029/1999JD900148

    Article  Google Scholar 

  • Pape L, Ammann C, Nyfeler-Brunner A et al (2009) An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems. Biogeosciences 6:405–429. doi:10.5194/bg-6-405-2009

    Article  Google Scholar 

  • Pihlatie MK, Christiansen JR, Aaltonen H et al (2013) Comparison of static chambers to measure CH4 emissions from soils. Agric For Meteorol 171–172:124–136. doi:10.1016/j.agrformet.2012.11.008

    Article  Google Scholar 

  • Pilegaard K (2013) Processes regulating nitric oxide emissions from soils. Philos Trans R Soc L B Biol Sci 368:20130126. doi:10.1098/rstb.2013.0126

    Article  Google Scholar 

  • Potting J, Bakkes J (2004) The GEO-3 scenarios 2002–2032: quantification and analysis of environmental impacts. UNEP/DEWA/RS.03-4 and RIVM 402001022. Division

  • Pumpanen J, Kolari P, Ilvesniemi H et al (2004) Comparison of different chamber techniques for measuring soil CO2 efflux. Agric For Meteorol 123:159–176

    Article  Google Scholar 

  • Purbopuspito J, Veldkamp E, Brumme R, Murdiyarso D (2006) Trace gas fluxes and nitrogen cycling along an elevation sequence of tropical montane forests in Central Sulawesi, Indonesia. Glob Biogeochem Cycles 20:1–11. doi:10.1029/2005GB002516

    Article  Google Scholar 

  • Raich JW, Potter CS, Bhagawati D (2002) Interannual variability in global soil respiration, 1980–1994. Glob Chang Biol 8:800–812. doi:10.1046/j.1365-2486.2002.00511.x

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/

  • Riley RH, Vitousek PM, Ecology S, Jan N (1995) Nutrient dynamics and nitrogen trace gas flux during ecosystem development in montane rain forest. Ecology 76:292–304

    Article  Google Scholar 

  • Rosenstock T, Mpanda M, Pelster D et al (2015) Greenhouse gas fluxes from agricultural soils of Kenya and Tanzania. J Geophys Res Biogeosciences 121:707–723. doi:10.1002/2016JG003341

    Google Scholar 

  • Saiz G, Green C, Butterbach-Bahl K et al (2006) Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant Soil 287:161–176. doi:10.1007/s11104-006-9052-0

    Article  Google Scholar 

  • Serca D, Delmas R, Jambert C, Labroue L (1994) Emissions of nitrogen oxides from equatorial rain forest in central Africa: origin and regulation of NO emission from soils. Tellus 46:243–254

    Article  Google Scholar 

  • Smith KA (1990) Anaerobic zones and denitrification in soil: modelling and measurement. In: Revsbech NP, Sørensen J (eds) Denitrification in soil and sediment. Springer, Boston, pp 229–244

    Chapter  Google Scholar 

  • Spiess A-N (2014) Propagate: propagation of uncertainty. R package version 1.0-4. http://CRAN.R-project.org/package=propagate

  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosystems 74:207–228. doi:10.1007/s10705-006-9000-7

    Article  Google Scholar 

  • Tang X, Liu S, Zhou G et al (2006) Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Glob Chang Biol 12(546):560. doi:10.1111/j.1365-2486.2006.01109.x

    Google Scholar 

  • Tokuda S, Hayatsu M (2004) Nitrous oxide flux from a tea field amended with a large amount of nitrogen fertilizer and soil environmental factors controlling the flux. Soil Sci Plant Nutr 50:365–374. doi:10.1080/00380768.2004.10408490

    Article  Google Scholar 

  • UNEP (2012) The role and contribution of montane forests and related ecosystem services to the Kenyan economy

  • van Dijk SM (2002) Biogenic NO emissions from forest and pasture soils: relating laboratory studies to field measurements. J Geophys Res 107:8058. doi:10.1029/2001JD000358

    Article  Google Scholar 

  • van Lent J, Hergoualc HK, Verchot LV (2015) Reviews and syntheses: soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: A meta-analysis. Biogeosciences 12:7299–7313. doi:10.5194/bg-12-7299-2015

    Article  Google Scholar 

  • Veldkamp E, Davidson E, Erickson H et al (1999) Soil nitrogen cycling and nitrogen oxide emissions along a pasture chronosequence in the humid tropics of Costa Rica. Soil Biol Biochem 31:387–394. doi:10.1016/S0038-0717(98)00141-2

    Article  Google Scholar 

  • Venterea RT, Groffman PM, Verchot LV et al (2003) Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs. Glob Chang Biol 9:346–357. doi:10.1046/j.1365-2486.2003.00591.x

    Article  Google Scholar 

  • Verchot LV, Davidson EA, Cattfinio JH et al (1999) Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Global Biogeochem Cycles 13:31–46. doi:10.1029/1998GB900019

    Article  Google Scholar 

  • Wang Y, Wang H, Wang ZL et al (2014) Effect of litter layer on soil-atmosphere N2O flux of a subtropical pine plantation in China. Atmos Environ 82:106–112. doi:10.1016/j.atmosenv.2013.10.028

    Article  Google Scholar 

  • Werner C, Kiese R, Butterbach-Bahl K (2007) Soil-atmosphere exchange of N2O, CH4, and CO2 and controlling environmental factors for tropical rain forest sites in western Kenya. J Geophys Res 112:D03308. doi:10.1029/2006JD007388

    Article  Google Scholar 

  • Wieder WR, Cleveland CC, Townsend AR (2011) Throughfall exclusion and leaf litter addition drive higher rates of soil nitrous oxide emissions from a lowland wet tropical forest. Glob Chan Biol 17:3195–3207. doi:10.1111/j.1365-2486.2011.02426.x

    Article  Google Scholar 

  • Yamamoto A, Akiyama H, Naokawa T et al (2014) Lime-nitrogen application affects nitrification, denitrification, and N2O emission in an acidic tea soil. Biol Fertil Soils 50:53–62. doi:10.1007/s00374-013-0830-6

    Article  Google Scholar 

  • Yao Z, Wolf B, Chen W et al (2010) Spatial variability of N2O, CH4 and CO2 fluxes within the Xilin River catchment of Inner Mongolia, China: a soil core study. Plant Soil 331:341–359. doi:10.1007/s11104-009-0257-x

    Article  Google Scholar 

  • Yao Z, Wei Y, Liu C et al (2015) Organically fertilized tea plantation stimulates N2O emissions and lowers NO fluxes in subtropical China. Biogeosciences 12:5915–5928. doi:10.5194/bg-12-5915-2015

    Article  Google Scholar 

  • Zheng X, Han S, Huang Y et al (2004) Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochem Cycles 18:1–19. doi:10.1029/2003GB002167

    Article  Google Scholar 

  • Zhou Z, Jiang L, Du E et al (2013) Temperature and substrate availability regulate soil respiration in the tropical mountain rainforests, Hainan Island, China. J Plant Ecol 6:325–334. doi:10.1093/jpe/rtt034

    Article  Google Scholar 

  • Zuazo P (2016) Development of a fully automated soil incubation and gas sampling system for quantifying trace gas emission pulses from soils at high temporal resolution. Dissertation, Albert-Ludwigs-Universität Freiburg im Breisgau, Germany

Download references

Acknowledgements

This work was funded by the Consultative Group on International Agricultural Research (CGIAR) Research program on Climate Change, Agriculture, and Food Security (CCAFS), which is carried out with support from CGIAR Fund Donors and through bilateral funding agreements. CAN acknowledges financial support by The Climate Food and Farming Research Network (CLIFF) and by The Helmholtz Research School MICMoR. EDP and KBB received additional funding from the German Federal Ministry of Education and Research (Förderzeichnen 01DG13012). Authors are grateful to the technical support received by the Mazingira Centre, Environmental Research and Educational facility (https://mazingira.ilri.org). We greatly thank the Kenya Forest Service (KFS) for access to the sites and field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Díaz-Pinés.

Additional information

Responsible Editor: Stephen Porder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5924 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arias-Navarro, C., Díaz-Pinés, E., Zuazo, P. et al. Quantifying the contribution of land use to N2O, NO and CO2 fluxes in a montane forest ecosystem of Kenya. Biogeochemistry 134, 95–114 (2017). https://doi.org/10.1007/s10533-017-0348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0348-3

Keywords

  • Carbon dioxide
  • Land use change
  • Nitric oxide
  • Nitrous oxide
  • Soils
  • Tropical forests