, Volume 134, Issue 1–2, pp 95–114 | Cite as

Quantifying the contribution of land use to N2O, NO and CO2 fluxes in a montane forest ecosystem of Kenya

  • C. Arias-Navarro
  • E. Díaz-Pinés
  • P. Zuazo
  • M. C. Rufino
  • L. V. Verchot
  • K. Butterbach-Bahl


Increasing demand for food and fibre by the growing human population is driving significant land use (LU) change from forest into intensively managed land systems in tropical areas. But empirical evidence on the extent to which such changes affect the soil-atmosphere exchange of trace gases is still scarce, especially in Africa. We investigated the effect of LU on soil trace gas production in the Mau Forest Complex region, Kenya. Intact soil cores were taken from natural forest, commercial and smallholder tea plantations, eucalyptus plantations and grazing lands, and were incubated in the lab under different soil moisture conditions. Soil fluxes of nitrous oxide (N2O), nitric oxide (NO) and carbon dioxide (CO2) were quantified, and we approximated annual estimates of soil N2O and NO fluxes using soil moisture values measured in situ. Forest and eucalyptus plantations yielded annual fluxes of 0.3–1.3 kg N2O–N ha−1 a−1 and 1.5–5.2 kg NO–N ha−1 a−1. Soils of commercial tea plantations, which are highly fertilized, showed higher fluxes (0.9 kg N2O–N ha−1 a−1 and 4.3 kg NO–N ha−1 a−1) than smallholder tea plantations (0.1 kg N2O–N ha−1 a−1 and 2.1 kg NO–N ha−1 a−1) or grazing land (0.1 kg N2O–N ha−1 a−1 and 1.1 kg NO–N ha−1 a−1). High soil NO fluxes were probably the consequence of long-term N fertilization and associated soil acidification, likely promoting chemodenitrification. Our experimental approach can be implemented in understudied regions, with the potential to increase the amount of information on production and consumption of trace gases from soils.


Carbon dioxide Land use change Nitric oxide Nitrous oxide Soils Tropical forests 



This work was funded by the Consultative Group on International Agricultural Research (CGIAR) Research program on Climate Change, Agriculture, and Food Security (CCAFS), which is carried out with support from CGIAR Fund Donors and through bilateral funding agreements. CAN acknowledges financial support by The Climate Food and Farming Research Network (CLIFF) and by The Helmholtz Research School MICMoR. EDP and KBB received additional funding from the German Federal Ministry of Education and Research (Förderzeichnen 01DG13012). Authors are grateful to the technical support received by the Mazingira Centre, Environmental Research and Educational facility ( We greatly thank the Kenya Forest Service (KFS) for access to the sites and field assistance.

Supplementary material

10533_2017_348_MOESM1_ESM.docx (5.8 mb)
Supplementary material 1 (DOCX 5924 kb)


  1. Akiyama H, Yan X, Yagi K (2006) Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data. Soil Sci Plant Nutr 52:774–787. doi: 10.1111/j.1747-0765.2006.00097.x CrossRefGoogle Scholar
  2. Arai S, Ishizuka S, Ohta S et al (2008) Potential N2O emissions from leguminous tree plantation soils in the humid tropics. Global Biogeochem Cycles 22:1–9. doi: 10.1029/2007GB002965 CrossRefGoogle Scholar
  3. Arias-Navarro C, Díaz-Pinés E, Klatt S et al (2017) Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical mountain forest in Kenya. J Geophys Res Biogeosci 122:514–527. doi: 10.1002/2016JG003667 CrossRefGoogle Scholar
  4. Blackie JR, Edwards KA (1979) General conclusions from the land use experiments in East Africa. East Afr Agric For J 43:273–277. doi: 10.1080/00128325.1979.11662968 Google Scholar
  5. Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Chang Biol 15:808–824. doi: 10.1111/j.1365-2486.2008.01681.x CrossRefGoogle Scholar
  6. Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochem Cycles. doi: 10.1029/2001GB001811 Google Scholar
  7. Breuer L, Papen H, Butterbach-Bahl K (2000) N2O emission from tropical forest soils of Australia. J Geophys Res 105:26353. doi: 10.1029/2000JD900424 CrossRefGoogle Scholar
  8. Breuer L, Kiese R, Butterbach-Bahl K (2002) Temperature and moisture effects on nitrification rates in tropical rain-forest soils. Soil Sci Soc Am J 66:834. doi: 10.2136/sssaj2002.8340 CrossRefGoogle Scholar
  9. Brumme R (1995) Mechanisms of carbon and nutrient release and retention in beech forest gaps. Plant Soil 2:593–600CrossRefGoogle Scholar
  10. Butterbach-Bahl K, Kock M, Willibald G et al (2004) Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4 in a tropical rain forest ecosystem. Global Biogeochem Cycles. doi: 10.1029/2004gb002243 Google Scholar
  11. Butterbach-Bahl K, Kahl M, Mykhayliv L et al (2009) A European-wide inventory of soil NO emissions using the biogeochemical models DNDC/Forest-DNDC. Atmos Environ 43:1392–1402. doi: 10.1016/j.atmosenv.2008.02.008 CrossRefGoogle Scholar
  12. Butterbach-Bahl K, Baggs E, Dannenmann M et al (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B Biol Sci 368:20130122. doi: 10.1098/rstb.2013.0122 CrossRefGoogle Scholar
  13. Castaldi S, Bertolini T, Valente A et al (2013) Nitrous oxide emissions from soil of an African rain forest in Ghana. Biogeosci Discuss 9:16565–16588. doi: 10.5194/bgd-9-16565-2012 CrossRefGoogle Scholar
  14. Chameides WL, Fehsenfeld F, Rodgers MO et al (1992) Ozone precursor relationships in the ambient atmosphere. J Geophys Res 97:6037. doi: 10.1029/91JD03014 CrossRefGoogle Scholar
  15. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640Google Scholar
  16. Davidson EA (1992) Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci Soc Am J 56:95–102. doi: 10.2136/sssaj1992.03615995005600010015x CrossRefGoogle Scholar
  17. Davidson EA, Kingerlee W (1997) A global inventory of nitric oxide emissions from soils. Nutr Cycl Agroecosystems 48:37–50. doi: 10.1023/A:1009738715891 CrossRefGoogle Scholar
  18. Davidson EA, Verchot LV (2000) Testing the hole in the pipe model of nitric and nitrous oxide emission from soils using the TRAGNET database. Global Biogeochem Cycles 14:1035–1042CrossRefGoogle Scholar
  19. Davidson EA, Vitousek PM, Riley R et al (1991) Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico. J Geophys Res Atmos. doi: 10.1029/91JD01476 Google Scholar
  20. Davidson EA, Keller M, Erickson HE et al (2000a) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50:667. doi: 10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2 CrossRefGoogle Scholar
  21. Davidson EA, Verchot LV, Cattanio JH, Ackerman IL (2000b) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69. doi: 10.1023/A:1006204113917 CrossRefGoogle Scholar
  22. Farquharson R, Baldock J (2008) Concepts in modelling N2O emissions from land use. Plant Soil 309:147–167. doi: 10.1007/s11104-007-9485-0 CrossRefGoogle Scholar
  23. Fu XQ, Li Y, Su WJ et al (2012) Annual dynamics of N2O emissions from a tea field in southern subtropical China. Plant, Soil Environ 58:373–378CrossRefGoogle Scholar
  24. Garcia-Montiel DC, Steudler PA, Piccolo MC et al (2001) Controls on soil nitrogen oxide emissions from forests and pastures in the Brazilian Amazon. Global Biogeochem Cycles 15:1021–1030CrossRefGoogle Scholar
  25. Garcia-Montiel DC, Steudler PA, Piccolo M et al (2003) Nitrogen oxide emissions following wetting of dry soils in forest and pastures in Rondônia, Brazil. Biogeochemistry 64:319–336. doi: 10.1023/A:1024968802018 CrossRefGoogle Scholar
  26. Gharahi Ghehi N, Werner C, Hufkens K et al (2014) N2O and NO emission from the Nyungwe tropical highland rainforest in Rwanda. Geoderma Reg 2–3:41–49. doi: 10.1016/j.geodrs.2014.09.008 CrossRefGoogle Scholar
  27. Government of Kenya (2010) Rehabilitation of the Mau Forest Ecosystem. A project concept prepared by the Interim Coordinating Secretariat, Office of the Prime Minister, on behalf of the Government of KenyaGoogle Scholar
  28. Gut A, Van Dijk SM, Scheibe M et al (2002) NO emission from an Amazonian rain forest soil: continuous measurements of NO flux and soil concentration. J Geophys Res D Atmos 107:1–10. doi: 10.1029/2001JD000521 Google Scholar
  29. Gütlein A, Zistl-Schlingmann M, Becker JN et al (2016) Nitrogen turnover and greenhouse gas emissions in a tropical alpine ecosystem, Mt. Kilimanjaro, Tanzania. Plant Soil. doi: 10.1007/s11104-016-3029-4 Google Scholar
  30. Han W, Xu J, Wei K et al (2013) Estimation of N2O emission from tea garden soils, their adjacent vegetable garden and forest soils in eastern China. Environ Earth Sci 70:2495–2500. doi: 10.1007/s12665-013-2292-4 CrossRefGoogle Scholar
  31. IPCC (2007) Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Geneva.Google Scholar
  32. IPCC (2014) Climate Change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Geneva.Google Scholar
  33. Ishizuka S, Tsuruta H, Murdiyarso D (2002) An intensive field study on CO2, CH4, and N2O emissions from soils at four land-use types in Sumatra, Indonesia. Global Biogeochem Cycles. doi: 10.1029/2001GB001614 Google Scholar
  34. IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. RomeGoogle Scholar
  35. Jaetzold R, Schmidt H, Hornetz B, Shisanya C (2010) Farm management handbook of Kenya Part II/B. In: Farm management handbook of Kenya, 2nd ed. Ministry of Agriculture, Kenya, in Cooperation with the German Agency for Technical Cooperation (GTZ), Nairobi, p 739Google Scholar
  36. Johansson C, Rodhe H, Sanhueza E (1988) Emission of NO in a tropical savanna and a cloud forest during the dry season. J Geophys Res Res 93:7180–7192CrossRefGoogle Scholar
  37. Kahle D, Wickham H (2013) ggmap: Spatial visualization with ggplot2. R J 5:144–161. doi: 10.1023/A:1009843930701 Google Scholar
  38. Keller M, Reiners WA (1994) Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Global Biogeochem Cycles 8:399–409. doi: 10.1029/94GB01660 CrossRefGoogle Scholar
  39. Keller M, Veldkamp E, Weitz AM, Reiners WA (1993) Effect of pasture age on soil trace-gas emissions from a deforested area of Costa Rica. Nature 365:244–246CrossRefGoogle Scholar
  40. Kenya Human Rights Commision (KHRC) (2008) A comparative study of the tea sector in Kenya. A case study of large scale tea estates.
  41. Kesik M, Blagodatsky S, Papen H, Butterbach-Bahl K (2006) Effect of pH, temperature and substrate on N2O, NO and CO2 production by Alcaligenes faecalis p. J Appl Microbiol 101:655–667. doi: 10.1111/j.1365-2672.2006.02927.x CrossRefGoogle Scholar
  42. Kim D-G, Thomas AD, Pelster D et al (2016) Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further research. Biogeosciences 13:4789–4809. doi: 10.5194/bg-13-4789-2016 CrossRefGoogle Scholar
  43. Koehler B, Corre MD, Veldkamp E et al (2009) Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input. Glob Chang Biol 15:2049–2066. doi: 10.1111/j.1365-2486.2008.01826.x CrossRefGoogle Scholar
  44. Krhoda GO (1988) The impact of resource utilization on the hydrology of the Mau Hills forest in Kenya. Mt Res Dev 8:193–200. doi: 10.2307/3673447 CrossRefGoogle Scholar
  45. Li C, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Clim Change 72:321–338. doi: 10.1007/s10584-005-6791-5 CrossRefGoogle Scholar
  46. Li Y, Fu X, Liu X et al (2013) Spatial variability and distribution of N2O emissions from a tea field during the dry season in subtropical central China. Geoderma 193:1–12. doi: 10.1016/j.geoderma.2012.10.008 CrossRefGoogle Scholar
  47. Liang LL, Grantz DA, Jenerette GD (2015) Multivariate regulation of soil CO2 and N2O pulse emissions from agricultural soils. Glob Chang Biol . doi: 10.1111/gcb.13130 Google Scholar
  48. Ludwig J, Meixner FX, Vogel B, Forstner J (2001) Soil-air exchange of nitric oxide: an overview of processes, environmental factors, and modeling studies. Biogeochemistry 52:225–257. doi: 10.1023/a:1006424330555 CrossRefGoogle Scholar
  49. Matson PA, Vitousek PM, Livingston GP, Swanberg NA (1990) Sources of variation in nitrous oxide flux from Amazonian ecosystems. J Geophys Res 95:16789. doi: 10.1029/JD095iD10p16789 CrossRefGoogle Scholar
  50. Medinets S, Skiba U, Rennenberg H, Butterbach-Bahl K (2015) A review of soil NO transformation: associated processes and possible physiological significance on organisms. Soil Biol Biochem 80:92–117. doi: 10.1016/j.soilbio.2014.09.025 CrossRefGoogle Scholar
  51. Melillo JM, Steudler PA, Feigl BJ et al (2001) Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon. J Geophys Res 106:179–188CrossRefGoogle Scholar
  52. Milder J, Moroge M, Shames S (2015) Operationalizing climate-smart agricultural landscapes: the case of a tea- producing landscape in Kericho, Kenya. In: Minang PA, van Noordwijk M, Freeman OE et al (eds) Climate-smart landscapes: multifunctionality in practice. World Agroforestry Centre (ICRAF), Nairobi, pp 319–333Google Scholar
  53. Monroy L, Mulinge W, Witwer M (2013) Analysis of incentives and disincentives for tea in Kenya. Technical notes seriesGoogle Scholar
  54. Müller AK, Matson AL, Corre MD, Veldkamp E (2015) Soil N2O fluxes along an elevation gradient of tropical montane forests under experimental nitrogen and phosphorus addition. Front Earth Sci 3:1–12. doi: 10.3389/feart.2015.00066 CrossRefGoogle Scholar
  55. Mutugi M, Kiiru W (2015) Biodiversity, local resource, national heritage, regional concern, and global impact: the case of Mau Forest, Kenya. Eur Sci J 1:681–692Google Scholar
  56. Neff JC, Keller M, Holland EA et al (1995) Fluxes of nitric oxide from soils following the clearing and burning of a secondary tropical rain forest. J Geophys Res 100:25913. doi: 10.1029/95JD02027 CrossRefGoogle Scholar
  57. Nobre AD, Keller M, Crill PM, Harriss RC (2001) Short-term nitrous oxide profile dynamics and emissions response to water, nitrogen and carbon additions in two tropical soils. Biol Fertil Soils 34:363–373. doi: 10.1007/s003740100396 CrossRefGoogle Scholar
  58. Nottingham AT, Turner BL, Whitaker J et al (2015) Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences 12:6071–6083. doi: 10.5194/bg-12-6071-2015 CrossRefGoogle Scholar
  59. Omumbo JA, Lyon B, Waweru SM et al (2011) Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate. Malar J 10:12. doi: 10.1186/1475-2875-10-12 CrossRefGoogle Scholar
  60. Otter LB, Yang WX, Scholes MC, Meixner FX (1999) Nitric oxide emissions from a southern African savanna. J Geophys Res Atmos 104:18471–18485. doi: 10.1029/1999JD900148 CrossRefGoogle Scholar
  61. Pape L, Ammann C, Nyfeler-Brunner A et al (2009) An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems. Biogeosciences 6:405–429. doi: 10.5194/bg-6-405-2009 CrossRefGoogle Scholar
  62. Pihlatie MK, Christiansen JR, Aaltonen H et al (2013) Comparison of static chambers to measure CH4 emissions from soils. Agric For Meteorol 171–172:124–136. doi: 10.1016/j.agrformet.2012.11.008 CrossRefGoogle Scholar
  63. Pilegaard K (2013) Processes regulating nitric oxide emissions from soils. Philos Trans R Soc L B Biol Sci 368:20130126. doi: 10.1098/rstb.2013.0126 CrossRefGoogle Scholar
  64. Potting J, Bakkes J (2004) The GEO-3 scenarios 2002–2032: quantification and analysis of environmental impacts. UNEP/DEWA/RS.03-4 and RIVM 402001022. DivisionGoogle Scholar
  65. Pumpanen J, Kolari P, Ilvesniemi H et al (2004) Comparison of different chamber techniques for measuring soil CO2 efflux. Agric For Meteorol 123:159–176CrossRefGoogle Scholar
  66. Purbopuspito J, Veldkamp E, Brumme R, Murdiyarso D (2006) Trace gas fluxes and nitrogen cycling along an elevation sequence of tropical montane forests in Central Sulawesi, Indonesia. Glob Biogeochem Cycles 20:1–11. doi: 10.1029/2005GB002516 CrossRefGoogle Scholar
  67. Raich JW, Potter CS, Bhagawati D (2002) Interannual variability in global soil respiration, 1980–1994. Glob Chang Biol 8:800–812. doi: 10.1046/j.1365-2486.2002.00511.x CrossRefGoogle Scholar
  68. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.
  69. Riley RH, Vitousek PM, Ecology S, Jan N (1995) Nutrient dynamics and nitrogen trace gas flux during ecosystem development in montane rain forest. Ecology 76:292–304CrossRefGoogle Scholar
  70. Rosenstock T, Mpanda M, Pelster D et al (2015) Greenhouse gas fluxes from agricultural soils of Kenya and Tanzania. J Geophys Res Biogeosciences 121:707–723. doi: 10.1002/2016JG003341 Google Scholar
  71. Saiz G, Green C, Butterbach-Bahl K et al (2006) Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant Soil 287:161–176. doi: 10.1007/s11104-006-9052-0 CrossRefGoogle Scholar
  72. Serca D, Delmas R, Jambert C, Labroue L (1994) Emissions of nitrogen oxides from equatorial rain forest in central Africa: origin and regulation of NO emission from soils. Tellus 46:243–254CrossRefGoogle Scholar
  73. Smith KA (1990) Anaerobic zones and denitrification in soil: modelling and measurement. In: Revsbech NP, Sørensen J (eds) Denitrification in soil and sediment. Springer, Boston, pp 229–244CrossRefGoogle Scholar
  74. Spiess A-N (2014) Propagate: propagation of uncertainty. R package version 1.0-4.
  75. Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosystems 74:207–228. doi: 10.1007/s10705-006-9000-7 CrossRefGoogle Scholar
  76. Tang X, Liu S, Zhou G et al (2006) Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Glob Chang Biol 12(546):560. doi: 10.1111/j.1365-2486.2006.01109.x Google Scholar
  77. Tokuda S, Hayatsu M (2004) Nitrous oxide flux from a tea field amended with a large amount of nitrogen fertilizer and soil environmental factors controlling the flux. Soil Sci Plant Nutr 50:365–374. doi: 10.1080/00380768.2004.10408490 CrossRefGoogle Scholar
  78. UNEP (2012) The role and contribution of montane forests and related ecosystem services to the Kenyan economyGoogle Scholar
  79. van Dijk SM (2002) Biogenic NO emissions from forest and pasture soils: relating laboratory studies to field measurements. J Geophys Res 107:8058. doi: 10.1029/2001JD000358 CrossRefGoogle Scholar
  80. van Lent J, Hergoualc HK, Verchot LV (2015) Reviews and syntheses: soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: A meta-analysis. Biogeosciences 12:7299–7313. doi: 10.5194/bg-12-7299-2015 CrossRefGoogle Scholar
  81. Veldkamp E, Davidson E, Erickson H et al (1999) Soil nitrogen cycling and nitrogen oxide emissions along a pasture chronosequence in the humid tropics of Costa Rica. Soil Biol Biochem 31:387–394. doi: 10.1016/S0038-0717(98)00141-2 CrossRefGoogle Scholar
  82. Venterea RT, Groffman PM, Verchot LV et al (2003) Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs. Glob Chang Biol 9:346–357. doi: 10.1046/j.1365-2486.2003.00591.x CrossRefGoogle Scholar
  83. Verchot LV, Davidson EA, Cattfinio JH et al (1999) Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Global Biogeochem Cycles 13:31–46. doi: 10.1029/1998GB900019 CrossRefGoogle Scholar
  84. Wang Y, Wang H, Wang ZL et al (2014) Effect of litter layer on soil-atmosphere N2O flux of a subtropical pine plantation in China. Atmos Environ 82:106–112. doi: 10.1016/j.atmosenv.2013.10.028 CrossRefGoogle Scholar
  85. Werner C, Kiese R, Butterbach-Bahl K (2007) Soil-atmosphere exchange of N2O, CH4, and CO2 and controlling environmental factors for tropical rain forest sites in western Kenya. J Geophys Res 112:D03308. doi: 10.1029/2006JD007388 CrossRefGoogle Scholar
  86. Wieder WR, Cleveland CC, Townsend AR (2011) Throughfall exclusion and leaf litter addition drive higher rates of soil nitrous oxide emissions from a lowland wet tropical forest. Glob Chan Biol 17:3195–3207. doi: 10.1111/j.1365-2486.2011.02426.x CrossRefGoogle Scholar
  87. Yamamoto A, Akiyama H, Naokawa T et al (2014) Lime-nitrogen application affects nitrification, denitrification, and N2O emission in an acidic tea soil. Biol Fertil Soils 50:53–62. doi: 10.1007/s00374-013-0830-6 CrossRefGoogle Scholar
  88. Yao Z, Wolf B, Chen W et al (2010) Spatial variability of N2O, CH4 and CO2 fluxes within the Xilin River catchment of Inner Mongolia, China: a soil core study. Plant Soil 331:341–359. doi: 10.1007/s11104-009-0257-x CrossRefGoogle Scholar
  89. Yao Z, Wei Y, Liu C et al (2015) Organically fertilized tea plantation stimulates N2O emissions and lowers NO fluxes in subtropical China. Biogeosciences 12:5915–5928. doi: 10.5194/bg-12-5915-2015 CrossRefGoogle Scholar
  90. Zheng X, Han S, Huang Y et al (2004) Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochem Cycles 18:1–19. doi: 10.1029/2003GB002167 CrossRefGoogle Scholar
  91. Zhou Z, Jiang L, Du E et al (2013) Temperature and substrate availability regulate soil respiration in the tropical mountain rainforests, Hainan Island, China. J Plant Ecol 6:325–334. doi: 10.1093/jpe/rtt034 CrossRefGoogle Scholar
  92. Zuazo P (2016) Development of a fully automated soil incubation and gas sampling system for quantifying trace gas emission pulses from soils at high temporal resolution. Dissertation, Albert-Ludwigs-Universität Freiburg im Breisgau, GermanyGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • C. Arias-Navarro
    • 1
    • 2
    • 3
  • E. Díaz-Pinés
    • 1
    • 4
  • P. Zuazo
    • 1
  • M. C. Rufino
    • 5
  • L. V. Verchot
    • 6
  • K. Butterbach-Bahl
    • 1
    • 3
  1. 1.Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU)Karlsruhe Institute of Technology (KIT)Garmisch-PartenkirchenGermany
  2. 2.Center for International Forestry Research (CIFOR)NairobiKenya
  3. 3.Mazingira Centre, Environmental Research and Educational FacilityInternational Livestock Research Institute (ILRI)NairobiKenya
  4. 4.Institute of Soil ResearchUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
  5. 5.Lancaster Environment CentreLancaster UniversityLancasterUK
  6. 6.International Center for Tropical Agriculture (CIAT)CaliColombia

Personalised recommendations